Problem 1. Volumes and dual bases

(a) Show that if

$$
\begin{equation*}
\epsilon_{a b c}=\sqrt{g}[a b c] \tag{1}
\end{equation*}
$$

Then show $\epsilon^{a b c}$ (defined from $\epsilon_{a b c}$ by raising indices, e.g. $v^{a}=g^{a b} v_{b}$) is

$$
\begin{equation*}
\frac{1}{\sqrt{g}}[a b c] \tag{2}
\end{equation*}
$$

(b) Consider three vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$, which span a parallel piped of volume $\boldsymbol{a}_{1} \cdot\left(\boldsymbol{a}_{2} \times\right.$ $\left.\boldsymbol{a}_{3}\right)>0$. The Gram-Schmidt decompostion constructs a set of orthogonal vectors from $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$

$$
\begin{align*}
& \boldsymbol{b}_{1}=\boldsymbol{a}_{1} \tag{3}\\
& \boldsymbol{b}_{2}=\boldsymbol{a}_{2}-\frac{\left(\boldsymbol{a}_{2} \cdot \boldsymbol{b}_{1}\right)}{\boldsymbol{b}_{1} \cdot \boldsymbol{b}_{1}} \boldsymbol{b}_{1} \tag{4}\\
& \boldsymbol{b}_{3}=\boldsymbol{a}_{3}-\frac{\left(\boldsymbol{a}_{3} \cdot \boldsymbol{b}_{1}\right)}{\boldsymbol{b}_{1} \cdot \boldsymbol{b}_{1}} \boldsymbol{b}_{1}-\frac{\boldsymbol{a}_{3} \cdot \boldsymbol{b}_{2}}{\boldsymbol{b}_{2} \cdot \boldsymbol{b}_{2}} \boldsymbol{b}_{2} \tag{5}
\end{align*}
$$

(i) Briefly interpret the decompisition graphically, and show that $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}$ are orthogonal.
(ii) Show using the properties of determinants that $\boldsymbol{a}_{1} \cdot\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right)=\operatorname{det}\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right)$ and that $\boldsymbol{a}_{1} \cdot\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right)=\left|\boldsymbol{b}_{1}\right|\left|\boldsymbol{b}_{2}\right|\left|\boldsymbol{b}_{3}\right|$. No long proofs please - just a fiew lines. Briefly interpret graphically.
(c) Consider given three basis vectors $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \boldsymbol{g}_{3}$.
(i) Show that the dual basis is

$$
\begin{equation*}
\boldsymbol{g}^{1}=\frac{\boldsymbol{g}_{2} \times \boldsymbol{g}_{3}}{\omega} \quad \boldsymbol{g}^{2}=\frac{\boldsymbol{g}_{3} \times \boldsymbol{g}_{1}}{\omega} \quad \boldsymbol{g}^{3}=\frac{\boldsymbol{g}_{1} \times \boldsymbol{g}_{2}}{\omega} \tag{6}
\end{equation*}
$$

where $\omega=\boldsymbol{g}_{1} \cdot\left(\boldsymbol{g}_{2} \times \boldsymbol{g}_{3}\right)$.
(ii) Using the properties of the dual basis and determinants, show (in no more than three lines!) that $\Omega=\boldsymbol{g}^{1} \cdot\left(\boldsymbol{g}^{2} \times \boldsymbol{g}^{3}\right)=1 / \omega$.

Problem 2. A dot product in non-orthogonal coordinates

Consider a 2d-coordinate system

$$
\begin{align*}
& x=u^{1}+2 u^{2} \tag{7}\\
& y=u^{2}+u^{1} \tag{8}
\end{align*}
$$

(a) Given the components of two vectors $v_{a}=\left(v_{1}, v_{2}\right)$ and $w_{a}=\left(w_{1}, w_{2}\right)$ so that $\boldsymbol{v}=v_{a} \boldsymbol{g}^{a}$ etc, explictly determine the dot product $\boldsymbol{v} \cdot \boldsymbol{w}$ in terms of these (lower) components.

Problem 3. Spherical coordinates

Spherical coordinates are defined by

$$
\begin{align*}
& x=r \sin \theta \cos \phi \tag{9}\\
& y=r \sin \theta \sin \phi \tag{10}\\
& z=r \cos \theta \tag{11}
\end{align*}
$$

(a) Determine the basis vectors $\boldsymbol{g}_{r}, \boldsymbol{g}_{\theta}, \boldsymbol{g}_{\phi}$ as an expansion in cartesian basis vectors $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}$, and illustrate them graphically.
(b) Determine the metric tensor $g_{a b}$ and $d s^{2}$, and $\boldsymbol{g}^{r}, \boldsymbol{g}^{\theta}, \boldsymbol{g}^{\phi}$.
(c) Determine the volume measure $d V$ using $g_{a b}$.
(d) Compute all Christoffel symbols by computing derivatives, e.g. compute

$$
\begin{equation*}
\partial_{\theta} \boldsymbol{g}_{r} \tag{12}
\end{equation*}
$$

and reexpand the result in $\boldsymbol{g}_{r}, \boldsymbol{g}_{\phi}, \boldsymbol{g}_{\theta}$. Give a graphical explanation for the ratio of $\Gamma_{\phi \phi}^{\theta}$ to $\Gamma_{\phi \phi}^{r}$.
(e) Compute $\Gamma_{\phi \phi}^{r}$ and $\Gamma_{\phi \phi}^{\theta}$ using the famous formula

$$
\begin{equation*}
\Gamma_{a b}^{c}=\frac{1}{2} g^{c d}\left(\partial_{a} g_{d b}+\partial_{b} g_{a d}-\partial_{d} g_{a b}\right) \tag{13}
\end{equation*}
$$

and verify that this agrees with the results in the previous item
(f) Consider cylindrical coordinates (look at lecture notes). Every year on the comps, some tragicomical ${ }^{1}$ student writes

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \cos \phi \hat{\boldsymbol{\rho}}=0 \quad \text { crazily wrong! } \tag{14}
\end{equation*}
$$

Show that the correct result is $\frac{1}{2} \hat{\mathbf{x}}$.

[^0](g) The curl of vector field is
\[

$$
\begin{equation*}
\nabla \times \boldsymbol{A}=\boldsymbol{e}_{i} \epsilon^{i j k} \partial_{j} A_{k} \tag{15}
\end{equation*}
$$

\]

Given this definition in cartesian coordinates, show by coordinate transformation that in a general coordinate system

$$
\begin{equation*}
\nabla \times \boldsymbol{A}=\boldsymbol{g}_{a} \epsilon^{a b c} \nabla_{b} A_{c} \tag{16}
\end{equation*}
$$

Argue that for the curl (and only the curl!) we may use a partial instead of covariant derivative

$$
\begin{equation*}
\nabla \times \boldsymbol{A}=\boldsymbol{g}_{a} \epsilon^{a b c} \partial_{b} A_{c} \tag{17}
\end{equation*}
$$

and use this result to show that for general orthogonal coordiantes

$$
\begin{align*}
(\nabla \times \boldsymbol{V})=\frac{\boldsymbol{e}_{\hat{1}}}{h_{2} h_{3}}\left[\frac{\partial\left(h_{3} V^{\hat{3}}\right)}{\partial u^{2}}-\frac{\partial\left(h_{2} V^{\hat{2}}\right)}{\partial u^{3}}\right]+\frac{\boldsymbol{e}_{\hat{2}}}{h_{1} h_{3}} & {\left[\frac{\partial\left(h_{1} V^{\hat{1}}\right)}{\partial u^{3}}-\frac{\partial\left(h_{3} V^{\hat{3}}\right)}{\partial u^{2}}\right] } \\
& +\frac{\boldsymbol{e}_{\hat{3}}}{h_{1} h_{2}}\left[\frac{\partial\left(h_{2} V^{\hat{2}}\right)}{\partial u^{1}}-\frac{\partial\left(h_{1} V^{\hat{1}}\right)}{\partial u^{2}}\right] \tag{18}
\end{align*}
$$

and here $\boldsymbol{e}_{\hat{a}}=\boldsymbol{g}_{a} / h_{a}$.
(h) For the specific surface shown below (i.e. the surface bounded by the red contour at $\phi=0$ which forms a square in r, θ space), use Eq. (18) to prove the Stokes theorem for this specific surface

(i) - Recall that for a viscous fluid the force per area $\Delta F / \Delta A$ of two streams flowing past each other with different velocities Δv^{x} is

$$
\begin{equation*}
\frac{\Delta F^{x}}{\Delta A_{y}}=-\eta \frac{\Delta v^{x}}{\Delta y} \tag{19}
\end{equation*}
$$

Here ΔF^{x} is the force on the upper (faster) stream by the lower (and slower) stream

I put a y-index on ΔA_{y} to indicate that area vector we are considering, $\Delta \vec{A}=\Delta A \vec{n}$, is pointing in the y direction.

- The force per area defines the stress tensor in the system. Thus, the stress tensor for the viscous fluid we have described above has the nonvanishing component

$$
\begin{equation*}
T^{x y}=-\eta \frac{\Delta v^{x}}{\Delta y} \tag{20}
\end{equation*}
$$

Indeed, the stress tensor $T^{i j}$ is very generally interpretted as

$$
\begin{equation*}
T^{i j}=\frac{\text { force in the } i \text {-th direction }}{\text { area in the } j \text {-th direction }}=\frac{\Delta F^{i}}{\Delta A_{j}} \tag{21}
\end{equation*}
$$

The stress tensor in cartesian coordinates of a viscous fluid is

$$
\begin{equation*}
T_{\mathrm{visc}}^{i j}=-\eta\left(\partial^{i} v^{j}+\partial^{j} v^{i}-\frac{2}{3} \delta^{i j} \partial_{\ell} v^{\ell}\right) \tag{22}
\end{equation*}
$$

In the simple case where the x-velocity is a function of y (and all other velocity components vanish), $T^{x y}=-\eta \partial^{y} v^{x}$ is the only non-vanishing component.

- According to Landau and Lifshitz Fluid Mechanics (a standard text not on general relativity, which therefore uses normalized coordinate vectors), the divergence of the the velocity is (but they leave off the hats!)

$$
\begin{equation*}
\nabla \cdot \boldsymbol{v}=\frac{1}{r^{2}} \partial_{r}\left(r^{2} v^{\hat{r}}\right)+\frac{1}{r \sin \theta} \partial_{\theta}\left(\sin \theta v^{\hat{\theta}}\right)+\frac{1}{r \sin \theta} \partial_{\phi} v^{\hat{\phi}} \tag{23}
\end{equation*}
$$

Derive this results using the formula involving covariant derivatives, $\nabla_{a} v^{a}$. Also compute it using the general expression

$$
\begin{equation*}
\nabla \cdot \boldsymbol{v}=\frac{1}{\sqrt{g}} \partial_{a}\left(\sqrt{g} v^{a}\right) \tag{24}
\end{equation*}
$$

According to Landau and Lifshitz one of the stress tensor components of a viscous fluid are $T^{\hat{r} \hat{\theta}}$ is (but they leave off the hats!)

$$
\begin{equation*}
T^{\hat{r} \hat{\theta}}=-\eta\left(\partial_{r} v^{\hat{\theta}}+\frac{1}{r} \partial_{\theta} v^{\hat{r}}-\frac{v^{\hat{\theta}}}{r}\right) \tag{25}
\end{equation*}
$$

Derive this result, given its cartesian counter part, Eq. (22)
(j) Using the setup of the previous problem, suppose that at an angle θ, but $\phi=0$, $T^{\hat{r} \hat{\theta}}=T^{\hat{\theta} \hat{r}}$ is the only non-vanishing component. What are the only non-vanishing cartesian components $T^{i j}$ and how are they related to $T^{\hat{r} \hat{\theta}}$? Draw a picture to explain your result.

[^0]: ${ }^{1}$ Definition of tragicomic. 1: of, relating to, or resembling tragicomedy. 2: manifesting both tragic and comic aspects.

