
Problem 1. Volumes and dual bases

(a) Show that if
εabc =

√
g[abc] (1)

Then show εabc (defined from εabc by raising indices, e.g. va = gabvb) is

1
√
g

[abc] (2)

(b) Consider three vectors a1,a2,a3, which span a parallel piped of volume a1 · (a2 ×
a3) > 0. The Gram-Schmidt decompostion constructs a set of orthogonal vectors from
a1,a2,a3

b1 =a1 (3)

b2 =a2 −
(a2 · b1)
b1 · b1

b1 (4)

b3 =a3 −
(a3 · b1)
b1 · b1

b1 −
a3 · b2
b2 · b2

b2 (5)

(i) Briefly interpret the decompisition graphically, and show that b1, b2, b3 are or-
thogonal.

(ii) Show using the properties of determinants that a1 · (a2×a3) = det(b1, b2, b3) and
that a1 · (a2×a3) = |b1||b2||b3|. No long proofs please – just a fiew lines. Briefly
interpret graphically.

(c) Consider given three basis vectors g1, g2, g3.

(i) Show that the dual basis is

g1 =
g2 × g3
ω

g2 =
g3 × g1
ω

g3 =
g1 × g2
ω

(6)

where ω = g1 · (g2 × g3).
(ii) Using the properties of the dual basis and determinants, show (in no more than

three lines!) that Ω = g1 · (g2 × g3) = 1/ω.

1



Problem 2. A dot product in non-orthogonal coordinates

Consider a 2d-coordinate system

x =u1 + 2u2 (7)

y =u2 + u1 (8)

(a) Given the components of two vectors va = (v1, v2) and wa = (w1, w2) so that v = vag
a

etc, explictly determine the dot product v ·w in terms of these (lower) components.

Problem 3. Spherical coordinates

Spherical coordinates are defined by

x =r sin θ cosφ (9)

y =r sin θ sinφ (10)

z =r cos θ (11)

(a) Determine the basis vectors gr, gθ, gφ as an expansion in cartesian basis vectors x̂, ŷ, ẑ,
and illustrate them graphically.

(b) Determine the metric tensor gab and ds2, and gr, gθ, gφ.

(c) Determine the volume measure dV using gab.

(d) Compute all Christoffel symbols by computing derivatives, e.g. compute

∂θgr (12)

and reexpand the result in gr, gφ, gθ. Give a graphical explanation for the ratio of Γθφφ
to Γrφφ.

(e) Compute Γrφφ and Γθφφ using the famous formula

Γcab =
1

2
gcd (∂agdb + ∂bgad − ∂dgab) . (13)

and verify that this agrees with the results in the previous item

(f) Consider cylindrical coordinates (look at lecture notes). Every year on the comps,
some tragicomical1 student writes∫ 2π

0

dφ

2π
cosφ ρ̂ = 0 crazily wrong! (14)

Show that the correct result is 1
2
x̂.

1Definition of tragicomic. 1 : of, relating to, or resembling tragicomedy. 2 : manifesting both tragic and
comic aspects.
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(g) The curl of vector field is
∇×A = eiε

ijk∂jAk (15)

Given this definition in cartesian coordinates, show by coordinate transformation that
in a general coordinate system

∇×A = gaε
abc∇bAc (16)

Argue that for the curl (and only the curl!) we may use a partial instead of covariant
derivative

∇×A = gaε
abc∂bAc (17)

and use this result to show that for general orthogonal coordiantes

(∇× V ) =
e1̂
h2h3

[
∂(h3V

3̂)

∂u2
− ∂(h2V

2̂)

∂u3

]
+

e2̂
h1h3

[
∂(h1V

1̂)

∂u3
− ∂(h3V

3̂)

∂u2

]

+
e3̂
h1h2

[
∂(h2V

2̂)

∂u1
− ∂(h1V

1̂)

∂u2

]
(18)

and here eâ = ga/ha.

(h) For the specific surface shown below (i.e. the surface bounded by the red contour at
φ = 0 which forms a square in r, θ space), use Eq. (18) to prove the Stokes theorem
for this specific surface

z

x

y

(i) • Recall that for a viscous fluid the force per area ∆F/∆A of two streams flowing
past each other with different velocities ∆vx is

∆F x

∆Ay
= −η∆vx

∆y
(19)

Here ∆F x is the force on the upper (faster) stream by the lower (and slower)
stream
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vx(y)

�Ay

�F x

I put a y-index on ∆Ay to indicate that area vector we are considering, ∆ ~A = ∆A~n,
is pointing in the y direction.

• The force per area defines the stress tensor in the system. Thus, the stress tensor
for the viscous fluid we have described above has the nonvanishing component

T xy = −η∆vx

∆y
(20)

Indeed, the stress tensor T ij is very generally interpretted as

T ij =
force in the i-th direction

area in the j-th direction
=

∆F i

∆Aj
(21)

The stress tensor in cartesian coordinates of a viscous fluid is

T ijvisc = −η(∂ivj + ∂jvi − 2

3
δij∂`v

`) (22)

In the simple case where the x-velocity is a function of y (and all other velocity
components vanish), T xy = −η∂yvx is the only non-vanishing component.

• According to Landau and Lifshitz Fluid Mechanics (a standard text not on general
relativity, which therefore uses normalized coordinate vectors), the divergence of
the the velocity is (but they leave off the hats!)

∇ · v =
1

r2
∂r(r

2vr̂) +
1

r sin θ
∂θ(sin θv

θ̂) +
1

r sin θ
∂φv

φ̂ (23)

Derive this results using the formula involving covariant derivatives, ∇av
a. Also

compute it using the general expression

∇ · v =
1
√
g
∂a(
√
gva) (24)

According to Landau and Lifshitz one of the stress tensor components of a viscous
fluid are T r̂θ̂ is (but they leave off the hats!)

T r̂θ̂ =− η

(
∂rv

θ̂ +
1

r
∂θv

r̂ − vθ̂

r

)
(25)

Derive this result, given its cartesian counter part, Eq. (22)
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(j) Using the setup of the previous problem, suppose that at an angle θ, but φ = 0,

T r̂θ̂ = T θ̂r̂ is the only non-vanishing component. What are the only non-vanishing
cartesian components T ij and how are they related to T r̂θ̂? Draw a picture to explain
your result.
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