
Problem 1. Practice with delta-fcns

A delta-function is a infinitely narrow spike with unit integral.
∫
dx δ(x) = 1.

(a) Show that

δ(ax) =
1

|a|δ(x) (1)

(b) Using the identity of part (b), show that

δ(g(x)) =
∑

m

1

|g′(xm)|δ(x− xm) where g(xm) = 0 and g′m(xm) 6= 0 (2)

(c) Show that ∫ ∞

0

dx δ(cos(x)) e−x =
1

2 sinh(π/2)
(3)

The delta function δ(x) should be thought of as sequence of functions δε(x) – known as
a Dirac sequence – which becomes infinitely narrow and have integral one. For example, an
infinitely narrow sequence of normalized Gaussians

δ(x) = lim
ε→0

δε(x) = lim
ε→0

1√
2πε2

e−
x2

2ε2 . (4)

The important properties are

1 =

∫
dx δε(x) (5)

and the convolution property

f(x) = lim
ε→0

∫
dxof(xo)δε(x− xo) (6)

I will notate any Dirac sequence with δε(x).
Delta functions are perhaps best thought about in Fourier space. In particular think

about Eq. (6) in Fourier space. At finite epsilon this reads

f(k) ' f(k)δε(k) . (7)

So the Fourier transform of a Dirac sequence δε(k) should be essentially one, except at large
k where the function f(k) is presumably small.

According to the uncertainty principle, a spike that has width ∆x ∼ ε in coordinate
space, will have width ∆k ∼ 1/ε in k-space (momentum space). The meaningless formal
expression ∫ ∞

−∞

dk

2π
eikx = δ(x) (8)

means that one should regulate this integral in some way and take the limit as the regulator
ε goes to zero. For example, one could cut off the upper limit at a kmax = 1/ε,

δε(x) =

∫ 1/ε

−1/ε

dk

2π
eikx =

sin(x/ε)

πx
(9)

Making a graph of this function (with 1/ε = 200):
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we see that for small ε it is infinitely narrow spike. Integrate around this spike between
−∆ . . .∆, where ∆ is small compared to one ∆� 1, but much greater than ε, ∆� ε

Iε =

∫ ∆

−∆

dx
sin(x/ε)

πx
(10)

=

∫ ∆/ε

−∆/ε

du
sin(u)

(πu)
(11)

'
∫ ∞

−∞
du

sin(u)

(πu)
(12)

'1 (13)

In the last steps we extended the integration to∞ (since ∆/ε� 1), and have used the table
integral,

∫∞
−∞ du sin(u)/(πu) = 1. The approximation becomes exact in the limit ε→ 0, and

thus we have shown that

δ(x) = lim
ε→0

δε(x) = lim
ε→0

sin(x/ε)

πx
(14)

is a Dirac sequence.
The precise way in which you regulate the Fourier integral is unimportant. The next

problem regulates the Fourier integral in a particularly common way.

(d) Consider the Fourier transform pair f(x) and f(k) =
∫∞
−∞ dx eikxf(x). Note that

f(k = 0) =

∫ ∞

−∞
dxf(x) (15)

Without using Mathematica, compute the following Fourier transform

δε(x) ≡
∫ ∞

−∞

dk

2π
eikxe−ε|k| (16)

You can check your algebra by explicitly checking that
∫
dx δε(x) = 1 by direct inte-

gration. Explain to yourself why one knows this integral must be unity before doing
the integral.
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Verify that
lim
ε→0

δε(x) = δ(x) (17)

i.e. that δε(k) is a Dirac sequence. This is another proof that

δ(x) = lim
ε→0

∫ ∞

−∞
dx eikxe−ε|x| =

∫ ∞

−∞
dx eikx (18)
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Problem 2. 3d delta-functions

A delta-function in 3 dimensions δ3(r− ro) is an infinitely narrow spike at ro which satisfies
∫
d3r δ3(r − ro) = 1 (19)

In spherical coordinates, where the measure is

d3r = r2dr d(cos θ) dφ = r2 sin θ dr dθ dφ , (20)

we must have

δ3(r−ro) =
1

r2
δ(r− ro)δ(cos θ− cos θo)δ(φ−φo) =

1

r2 sin θ
δ(r− ro) δ(θ− θo)δ(φ−φo) (21)

so that
∫
d3r δ3(r) = 1. For a general curvilinear coordinate system

δ3(r − ro) =
1√
g

∏

a

δ(ua − uao) (22)

where uao are the coordinates of ro and
√
g =

∣∣∣
∣∣∣ ∂(x1,x2,x3)
∂(u1,u2,u3)

∣∣∣
∣∣∣ is the appropriate (absolute value)

of the jacobian determinant:

∣∣∣∣
∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣ = det




∂x1

∂u1
∂x1

∂u2
∂x1

∂u3
∂x2

∂u1
∂x2

∂u2
∂x2

∂u3
∂x3

∂u1
∂x3

∂u2
∂x3

∂u3


 (23)

(a) Working in a general coordinate system, show that
∫
d3rδ3(r − r0) = 1 (24)

(b) What is formula δ3(r − ro) for cylindrical coordinates?

(c) A uniform ring of charge Q and radius a sits at height zo above the xy plane, and the
plane of the ring is parallel to the xy plane. Express the charge density ρ(r) (charge
per volume) in spherical coordinates using delta-functions. Check that the volume
integral of ρ(r) gives the total Q.

x

y

zo

(d) Consider a charge Q spread uniformly over a flat circular disc of negligble thickness
and radius R, lying flat in the xy plane at z = 0. Express the charge density ρ(r, θ, φ)
in spherical coordinates using δ-fcns and θ functions.
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Problem 3. Periodic pulses

A pulse of electric field takes the form

E1(t) =
1√

2πσ2
e−t

2/(2σ2)e−iωot (25)

where ωo � 1
σ

(a) Show by direct integration that its Fourier transform is 1

E1(ω) = e−
1
2
σ2(ω−ωo)2 (28)

Sketch ReE1(t) and its power spectrum |E1(ω)|2 qualitatively, paying heed to the
parameters, ωo � 1

σ
.

(b) Suppose that the wave form repeats once, with the second pulse arriving at a time To
after the first pulse. The total electric field, E2(t), consists of the first pulse E1(t) at
centered at time t = 0, and a second indentical pulse at time To, E2(t) = E1(t)+E1(t−
To). Show that the Fourier transform and the power spectrum is

E2(ω) = E1(ω) (1 + eiωTo) |E2(ω)|2 = |E1(ω)|2 (2 + 2 cos(ωTo)) (29)

(c) Now suppose that we have n (with n odd) arranged almost symmetrically around t = 0,
i.e.

En(t) = E1(t+(n−1)To/2)+. . .+E1(t+To)+E1(t)+E1(t−To)+. . . E1(t−(n−1)To/2) ,
(30)

so that for n = 3
E3(t) = E1(t+ To) + E1(t) + E1(t− To) . (31)

Show that

En(ω) = E1(ω)
sin(nωTo/2)

sin(ωTo/2)
(32)

and

|En(ω)|2 = |E1(ω)|2
(

sin(nωTo/2)

sin(ωTo/2)

)2

(33)

These functions are shown below:

1As is conventional the Fourier transform of temporal signal is

f(t) =

∫ ∞

−∞

dω

2π
e−iωtf̂(ω) (26)

f(ω) =

∫ ∞

−∞
dteiωtf(t) (27)

This has the opposite sign from the spatial fourier transform f̂(k) =
∫
dxe−ikxf(x).
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(d) By taking limits of your expressions in the previous part show that after n pulses, with
n → ∞, show that the sequence of functions given by Eq. (32) and Eq. (33) tends to
the Dirac sequences

lim
n→∞

En(ω) =
∑

m

E1(ωm)
2π

To
δ(ω − ωm) (34)

and

lim
n→∞

|En(ω)|2 = nTo︸︷︷︸
total time

×
∑

m

|E1(ωm)|2 2π

T 2
o

δ(ω − ωm) (35)

where ωm = 2πm/To.

(e) Qualitatively sketch the time-averaged power spectrum of part (d), i.e. sketch

limn→∞ |En(ω)|2
total time

. (36)

Compare your results for the time-averaged spectrum to the single pulse spectrum of
part (a).

Remark We have in effect shown that if we define

∆(t) ≡
∞∑

n=−∞

δ(t− nTo) . (37)

Then the Fourier transform of ∆(t) is

∆̂(ω) =
∑

n

e−iωnTo =
∑

m

2π

To
δ(ω − ωm) . (38)

We used this to prove the Poisson summation formula in class

∑

n

f(nTo) =
1

To
∑

m

f̂(ωm) (39)

where f(t) is any function and f̂(ω) is its Fourier transform.
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Problem 4. Hankel Transforms and Bessel functions

Consider a 2D function f(x, y) = f(r, φr) and extend the Fourier transform in an obvious
way

f̂(k) =

∫
d2re−ik·rf(r) (40)

f(r) =

∫
d2k

(2π)2
eik·rf̂(k) (41)

We use a vector notation here:

r ≡ (x, y) = (r cosφr, r sinφr)

∫
d2r ≡

∫ ∞

−∞
dx

∫ ∞

∞
dy =

∫ ∞

0

rdr

∫ 2π

0

dφr (42)

k ≡ (kx, ky) = (k cosφk, k sinφk)

∫
d2k ≡

∫ ∞

−∞
dkx

∫ ∞

−∞
dky =

∫ ∞

0

kdk

∫ 2π

0

dφk (43)

The exponential factor can be written in any number of ways

eik·r ≡ eikxx+ikyy = eikr cos(φk−φr) (44)

Clearly at any fixed radius of magnitude r, the azimuthal dependence of the function f(r, φr)
can be expanded in fourier series

f(r, φr) =
1

2π

∑

n

fn(r)einφr . (45)

where we have defined r = (r cosφr, r sinφr). Similarly, at any fixed wavenumber magnitude
we may expand f(k, φ)k in a Fourier series

f̂(k, φk) =
1

2π

∑

n

f̂n(k)einφk (46)

were we have defined k = (kx, ky) = (k cosφk, k sinφk). The relationship between fn(r) and

f̂n(k) is given by Hankel transforms which we develop below.

(a) Examine

eik·r =eikr cos(∆φ) (47)

where ∆φ = (φk − φr) is the angle between the r and k. Expand Eq. (47) in a power
series in kr to at least fourth order, and collect it in powers of ei∆φ. (Hint: write
Eq. (47) as exp(ikr

2
ei∆φ) exp(ikr

2
e−i∆φ) before expanding.) You should find

eik·r =

(
1

0!0!
− 1

1!1!
u2 +

1

2!2!
u4

)
+ iei∆φ

(
1

0!1!
u− 1

1!2!
u3

)

+ i2ei2∆φ

(
1

0!2!
u2 − 1

1!3!
u4

)
+ i3ei3∆φ

(
1

0!3!
u3

)
+ i4ei4∆φ

(
1

0!4!
u4

)

+ similar results for e−in∆φ terms (48)

with u = kr/2.
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(b) Continuing the expansion of part (a), show that the fourier series assocated with eik·r

takes the form

eikr cos(∆φ) =
∞∑

n=−∞

Jn(kr)inein∆φ (49)

where for positive n

Jn(x) ≡
(x

2

)n ∞∑

k=0

(−1)k

k!(n+ k)!

(x
2

)2k

(50)

and for negative n we just have defined

J−n(x) = (−1)nJn(x) (51)

Jn(x) is the Bessel function of order n. Sketch the first four Bessel functions using
Mathematica.

(c) Given the fundamental identity, Eq. (49), show that

f̂n(k) =2π

∫ ∞

0

rdr (−i)nJn(kr)fn(r) (52)

fn(r) =

∫ ∞

0

kdk

2π
inJn(kr)f̂n(k) (53)

We say that f̂n(k) is the Hankel transform of fn(r) of degree n.

(d) The completeness relation in 2D reads

∫
d2k

(2π)2
eik·(x−x

′) = δ2(x− x′) =
1

r
δ(r − r′)δ(φr − φ′r) (54)

The fourier series are complete as well (see class notes):

1

2π

∑

n

ein(φr−φ′r) = δ(φr − φ′r) (55)

Show that Eq. (54) together with the fundamental identity Eq. (49) and Eq. (55)
implies that Jn(kr) are complete in the following sense:

∫ ∞

0

kdk Jn(kr)Jn(kr′) =
1

r
δ(r − r′) . (56)

Use this to show that Eq. (52) is consistent with Eq. (53).
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Problem 5. AM and FM

In radio transmission the “carrier” frequency is a high frequency compared to the signal.
For example, the 820 in the radio station AM 820 WNYC stands for 820 kHz, while the 93.9
in the radio station FM 93.9 WNYC stands for 93.9 MHz. The signal frequency (i.e. sound)
is much lower and usually measured in hundreds of Herz. (The “middle A” tuning note is
440 Hz). AM modulation encodes the signal by changing the amplitude of wave according to
the signal frequency. FM modulation encodes the signal by slightly modifying the frequency
of the carrier wave. AM modulation was considered in class. This problem considers FM
modulation
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Frequency Modulation

Consider the FM modulated periodic function of time with period T0:

S(t) = Ae−i(ωct+ε cos(ωot)) (57)

• Here the carrier frequency is ωc = nc
2π
T0

with nc � 1.

• The signal frequency is ωo = 2π
T0

.

• ε is the modulation parameter and controls the bandwidth of the signal. Indeed, the
local frequency, defined as the time-derivative of the phase φ(t) = ωct+ ε cos(ω0t),

local frequency ≡ dφ(t)

dt
(58)

varies between
ωc − εωo . . . ωc + εω0. (59)

• For ωc = 20ω0 and ε = 10 a plot of the real part of this signal is shown above.
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(a) Expand S(t) as a Fourier series

S(t) =
1

T0

∞∑

n=−∞

Sne
−iωnt (60)

You should find
Sn
T0A

= in−ncJn−nc(ε) (61)

(b) Plot the power spectrum:
|Sn|2
T 2

0A
2

(62)

with Mathematica. Take a carrier frequency ωc = 820ωo and a modulation parameter
of ε = 1, and plot it between ωn = 810ωo and 830ωo. You should find that the signal
is sharply peaked near n = 820. The relevant command is

DiscretePlot[BesselJ[n - 820, 1]^2, {n, 810, 830}, PlotRange->{0, 1.0}]

(i) Set ε to be a small number – say 0.1. What do you see? Why is this the required
result? Explain

(ii) Set ε = 40. What is the approximate frequency width of the power spectrum?
You may need to change the plot domain and range to see the spectrum. What
is the frequency width of the power spectrum in units of ωo and why is this the
expected result?

(iii) Keep ε = 40 as in the last part. Use Mathematica to sum up the power in the
frequency range from ω = 700ωo to ω = 900ωo

Sum[BesselJ[n - 820, 40.0]^2, {n, 700, 900} ]

Explain this result.
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