Problem 1
a) $\delta(a x)$ clearly vanishes on every interval which excludes the origin

Then changing variables: $u=a x$

$$
\begin{aligned}
\int_{-\varepsilon}^{\varepsilon} d x \delta(a x) & =\int_{-|a| \varepsilon}^{|a| \varepsilon} \frac{d u}{|a|} \delta(u) \\
& =\frac{1}{|a|}
\end{aligned}
$$

So by definition

$$
\delta(a x)=\frac{\delta(x)}{|a|}
$$

b) The delta-fon $\delta(g(x))$ can be non-zero only if $g\left(x_{m}\right)=0$. Near a zero we have

$$
g(x)=g^{\prime}\left(x_{m}\right)\left(x-x_{m}\right)
$$

So by the previous problem we have near x_{m} that $\delta(g(x))=\delta\left(g^{\prime}\left(x_{m}\right)\left(x-x_{m}\right)\right)$ and thus

$$
\delta(g(x))=\sum_{m} \frac{1}{\left|g^{\prime}\left(x_{m}\right)\right|} \delta\left(x-x_{m}\right)
$$

c) Then since $\cos x=0$ for $x_{m}=\pi / 2+m \pi$

$$
=\delta(\cos (x))=\sum_{m=-\infty}^{\infty} \frac{\delta(\pi / 2+m \pi)}{\left\lvert\, \frac{\cos ^{\prime}(\pi / 2+m \pi) \mid}{\infty}\right.}
$$

Then

$$
\begin{aligned}
\left|\frac{d}{d x} \cos (x)\right| & =\left.|\sin (x)|\right|_{x=\pi / 2+n \pi} \\
& =1
\end{aligned}
$$

So then

$$
\begin{aligned}
& \int_{0}^{\infty} d x \delta(\cos x) e^{-x}=\int_{0}^{\infty} d x e^{-x} \sum_{m=-\infty}^{\infty} \delta(\pi / 2+m \pi) \\
&=\sum e^{-(\pi / 2+m \pi)}=e^{-\pi / 2}\left[1+e^{-\pi}+e^{-2 \pi}+\ldots\right] \\
&=\frac{e^{-\pi / 2}}{1-e^{-\pi}}=\frac{1}{e^{\pi / 2}-e^{-\pi / 2}}=\frac{1}{2 \sinh (\pi / 2)}
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
\delta(x) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} e^{-\varepsilon|k|} \quad(E q, \ngtr) \\
& =\int_{0}^{\infty} \frac{d k}{2 \pi} e^{i k(x+i \varepsilon)}+\int_{-\infty}^{0} \frac{d k}{2 \pi} e^{i k(x-i \varepsilon)} \\
& =\frac{1}{2 \pi}\left[\frac{-1}{i(x+i \varepsilon)}+\frac{1}{i(x-i \varepsilon)}\right]
\end{aligned}
$$

$$
\frac{\delta_{\varepsilon}(x)=\frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}}}{\uparrow \text { thin }}
$$

- Then clearly vanishes \uparrow for all intervals not containg the origin. And, we have from $E_{q} \&$ and the theory of fourier transforms:

$$
e^{-\varepsilon|k|}=\int_{-\infty}^{\infty} e^{-i k x} \delta_{\varepsilon}(x) d x
$$

- Setting $k=0$ we have

$$
1=\int_{-\infty}^{\infty} \delta_{\varepsilon}(x) d x
$$

Which can be verified by direct integration of Eq Thus $\delta_{\varepsilon}(x)$ is correctly normalized, so that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}}=\delta(x)
$$

Problem 2
a) $\int d^{3} r \delta^{3}\left(\vec{r}-\vec{r}_{0}\right)=\int \sqrt{f} d u^{1} d u^{2} d u^{3} x$

$$
\begin{aligned}
& \quad \frac{1}{\sqrt{g}} \delta\left(u^{\prime}-u_{0}^{\prime}\right) \delta\left(u^{2}-u_{0}^{2}\right) \\
& =1
\end{aligned}
$$

b) $\delta^{3}\left(\vec{r}-\vec{r}_{0}\right)=\frac{1}{\rho} \delta\left(\rho-\rho_{0}\right) \delta\left(\phi-\phi_{0}\right) \delta\left(z-z_{0}\right)$
c) $p(r)=\frac{1}{r^{2} \sin \theta_{\star}} \delta\left(r-\sqrt{a^{2}+z_{0}^{2}}\right) \delta\left(\theta-\theta_{*}\right) \frac{Q}{2 \pi}$

Here $\cos \theta_{*} \equiv \frac{z_{0}}{\left(z_{0}^{2}+a^{2}\right)^{1 / 2}}$

- Clearly integrating gives Q

$$
\int r^{2} \sin \theta d r d \theta d \phi \quad \rho(r)=Q
$$

d)

Then, $d z=r \sin \theta d \theta+\sin \theta d r$. Note the charge density has support only at $\theta=\pi / 2$ where $d z=r d \theta$ and thus

$$
\delta(z)=\frac{1}{r} \delta(\theta-\pi / 2)
$$

Yielding

$$
P(r)=\frac{Q}{\pi R^{2}} \frac{1}{r} \delta(\theta-\pi / 2) \theta(R-r)
$$

- You can check

$$
\begin{aligned}
& \int r^{2} \sin \theta d r d \theta d \phi \rho(r) \\
= & \frac{Q}{\pi R^{2}} \int_{0}^{R} r d r \int_{0}^{2 \pi} d \phi=Q
\end{aligned}
$$

Problem 3
a) The

$$
E(\omega)=\int_{-\infty}^{\infty} e^{+i \omega t} \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-t^{2} / 2 \sigma^{2}} e^{-i \omega_{0} t} d t
$$

To do this integral first define $\bar{t} \equiv \frac{t}{\sigma}$
and $\bar{\omega} \equiv \sigma\left(\omega-\omega_{0}\right)$ which is motivated by units

$$
E(\omega)=\int_{-\infty}^{\infty} d \bar{t} \frac{e^{-\bar{t}^{2} / 2+i \bar{\omega} \bar{t}}}{\sqrt{2 \pi}}
$$

- Now complete the square

$$
\begin{aligned}
& u \equiv \bar{t}-i \bar{\omega} \\
& u^{2}=\bar{t}^{2}-2 i \bar{\omega} \bar{t}+\bar{\omega}^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
& E(\omega)=e^{-\bar{\omega}^{2} / 2} \int_{-\infty+i \bar{\omega}}^{\infty+i \bar{\omega}} d u e^{-u^{2} / 2}=e^{-\bar{\omega}^{2} / 2} \int_{-\infty}^{\infty} d u e^{-u^{2}} \frac{\sqrt{2} \pi}{\infty} \\
& E(\omega)=e^{-\bar{\omega}^{2} / 2} \quad \begin{array}{ll}
\text { requires } & \text { Cauchy } \\
& =e^{-\sigma^{2}\left(\omega-\omega_{0}\right)^{2} / 2}
\end{array} \quad \text { theorem }
\end{aligned}
$$

b) Then for two pulses

$$
E_{2}(\omega) \equiv \int_{-\infty}^{\infty}\left(E_{1}(t)+E_{1}\left(t-T_{0}\right)\right) e^{+i \omega t}
$$

e. $E_{2}(\omega)=E_{1}(\omega)+E_{1}(\omega) e^{i \omega T_{0}}$
$\cdot\left|E_{2}(\omega)\right|^{2}=\left|E_{1}(\omega)+E_{1}(\omega) e^{i \omega T_{0}}\right|^{2}$

$$
\begin{aligned}
& =\left|E_{1}(\omega)\right|^{2}\left(1+e^{i \omega T_{0}}+e^{-i \omega T_{0}}+1\right) \\
& =\left|E_{1}(\omega)\right|^{2}\left(2+2 \cos \left(\omega T_{0}\right)\right.
\end{aligned}
$$

C) For n pulses we have following part b)

$$
\begin{aligned}
& E_{n}(\omega)=E_{1}(\omega) e^{-i \omega(n-1) T_{0} l_{2}}+E_{1} e^{-i \omega(n-1) T_{0} / 2} e^{i \omega T_{0}} \\
&+\ldots+E_{1} e^{-i \omega(n-1) T_{0} / 2} e^{i(n-1) \omega T_{0}}
\end{aligned}
$$

T Take $n=3$ where

$$
E_{3}(\omega)=E_{1}(\omega) e^{-i \omega T_{0}}+E_{1}(\omega)+E_{1}(\omega) e^{i \omega \tau_{0}}
$$

etc. Now pulling out a common factor of $E_{1} e^{-i \omega(n-1) T_{0} 12}$, we have:

$$
\begin{aligned}
& E_{n}(\omega)=E_{1}(\omega) e^{-i \omega(n-i) T_{0} l_{2}} \\
& {\left[1+e^{+i \omega T_{0}}+e^{2 i \omega T_{0}}+\cdots e^{(n-1) i \omega T_{0}}\right]} \\
& =E_{1}(\omega)\left[\frac{e^{-i \omega(n-1) T_{0} / 2}\left(1-e^{i \omega n T_{0}}\right)}{1-e^{i \omega T_{0}}}\right] \\
& =E_{1}(\omega)\left[\frac{\sin \left(n \omega T_{0} / 2\right)}{\sin \left(\omega T_{0} / 2\right)}\right]
\end{aligned}
$$

Then

$$
\left|E_{n}(\omega)\right|^{2}=E_{1}(\omega)\left[\frac{\sin \left(n \omega T_{0} / 2\right)}{\sin \left(\omega T_{0} / 2\right)}\right]^{2}
$$

d) From the graphics we see that the functions have spikes at $\omega \simeq \frac{2 \pi}{T_{0}} m$.
We only need to show that these spikes are appropriately normalized. To this end integrate around a spike. Take the spike at $m=0$ for simplicity with n large

$$
I_{1}=\int_{-\varepsilon}^{\varepsilon} \frac{\sin \left(n \omega T_{0} / 2\right)}{\sin \left(\omega T_{0} / 2\right)} d \omega
$$

Since ω is small $[-\varepsilon \ldots \varepsilon]$ we may expand the denominator

$$
\sin \left(\omega T_{0} / 2\right) \simeq \omega T_{0} / 2
$$

Then

$$
I_{1}=\frac{2}{T_{0}} \int_{-\varepsilon}^{\varepsilon} \frac{d \omega}{\omega} \sin \left(n \omega T_{0} / 2\right)
$$

- But, we may not expand the numerator since n is arbitrarily large. Define

$$
\begin{aligned}
& u=n \omega T_{0} / 2 \text {. Then } \\
& I_{1}=\frac{2}{T_{0}} \int_{-\varepsilon n \omega T_{0} / 2}^{\sum n \omega T_{0} / 2} \frac{d u}{u} \sin (u)
\end{aligned}
$$

Taking $n \rightarrow \infty$

$$
\begin{aligned}
& I=\frac{2}{T_{0}} \int_{-\infty}^{\infty} \frac{d u}{u} \sin (u) \\
& I_{1}=\frac{2 \pi}{T_{0}} \quad \rightarrow \text { use }
\end{aligned}
$$

use mathematical or complex analysis π

Thus, we have shown

- $\lim _{n \rightarrow \infty} E_{n}(\omega)=\sum_{n} E_{1}\left(\omega_{n}\right) \frac{2 \pi}{T_{0}} \delta\left(\omega-\omega_{m}\right)$
- Similarly we have to compute the integral:

$$
I_{2} \equiv \int_{-\varepsilon}^{\varepsilon}\left[\frac{\sin \left(n \omega T_{0} / 2\right)}{\sin \left(\omega T_{0} / 2\right)}\right]^{2} d \omega
$$

We have, following the same steps as before,

$$
u \equiv n \omega T_{0} / 2 \quad \frac{d \omega}{\omega}=\frac{d u}{u}
$$

We have

$$
I_{2}=\frac{n}{\left(T_{0} / 2\right)} \int_{-n \varepsilon T_{0} / 2}^{n \varepsilon T_{0} / 2}\left(\frac{\sin (u)}{u}\right)^{2} d u
$$

Taking $n \rightarrow \infty$ and using the table integral

$$
\int_{-\infty}^{\infty} d u\left(\frac{\sin u}{u}\right)^{2}=\pi
$$

Gives

$$
I_{2}=n T_{0} \frac{2 \pi}{T_{0}^{2}}
$$

Thus we have established the limit

$$
\lim _{n \rightarrow \infty} \frac{\left|E_{n}(w)\right|^{2}}{\text { Total time }}=\sum_{m}\left|E_{1}\left(\omega_{m}\right)\right|^{2} \frac{2 \pi}{T_{0}^{2}} \delta\left(w-\omega_{m}\right)
$$

e) The picture is the following

instead of the original smooth curve one finds a set of spikes separated by $\frac{2 \pi}{T_{0}}=\Delta \omega$ $\omega-\omega_{0}$
The relative magnitudes of the spikes is given by $E_{1}(\omega)$.

Problem 4
a) Take $\exp \left(\frac{i k r}{2} e^{i \Delta \phi}\right) \exp \left(\frac{i k r}{2} e^{-i \Delta \phi}\right)=e^{i \vec{k} \cdot \vec{r}}$

- The expansion then is a produt

$$
\begin{aligned}
e^{i \vec{k} \cdot \vec{r}} & =\left[1+\frac{i}{1!}\left(\frac{k r}{2}\right) e^{i \Delta \phi}+\frac{i^{2}}{2!}\left(\frac{k r}{2}\right)^{2} e^{i \Delta \phi}+\ldots\right] \\
& \times\left[1+\frac{i}{1!}\left(\frac{k r}{2}\right) e^{-i \Delta \phi}+\left(+\frac{i}{}\right)^{2}\right. \\
2! & \left.\left(\frac{k r}{2}\right)^{2} e^{-i 2 \Delta \phi}+\ldots\right]
\end{aligned}
$$

for instance

- Then ^ the way you get $\left(e^{i \Delta \phi}\right)$ is by selecting $e^{i n \Delta \phi}$ terms from the first sum in square brackets and $e^{-i(n-1) \Delta \phi}$ terms in the second bracket.
- Thus -

$$
\begin{aligned}
& e^{i \vec{k} \cdot \vec{r}}=\left(e^{i \Delta \phi}\right)^{0}\left[1 \cdot 1+\frac{i \cdot i}{1!!}\left(\frac{k r}{2}\right)^{2}+\frac{i^{2}}{2!} \frac{i^{2}}{2!}\left(\frac{k r}{4}\right)^{2}+\cdots\right] \\
& \quad+\left(e^{i \Delta \phi}\right)\left[\frac{i}{1!}\left(\frac{k r}{2}\right)+\frac{i^{2}}{2!} \frac{i}{1!}\left(\frac{k r}{2}\right)^{2}\left(\frac{k r}{2}\right)+\cdots\right]
\end{aligned}
$$

$$
\begin{aligned}
& +e^{i 2 \Delta \phi}\left[\frac{i^{2}}{\left.2!\left(\frac{k r}{2}\right)^{2}+\frac{i^{3}}{3!}\left(\frac{k r}{2}\right)^{3} \frac{i}{1!}\left(\frac{k r}{2}\right)+\cdots\right]} \begin{array}{l}
+e^{i 3 \Delta \phi}\left[\frac{i^{3}}{3!}\left(\frac{k r}{2}\right)^{3}\right] \\
+e^{i 4 \Delta \phi}\left[\frac{i^{4}}{4!}\left(\frac{k r}{2}\right)^{4}\right]+\text { negative terms }
\end{array} .\right.
\end{aligned}
$$

This agrees with the expression in the handout.
b) From the discussion given abouve the coefficient of $e^{i n \Delta \phi}$ is for $n>0$

$$
\begin{aligned}
C_{n} & =\sum_{k=0} \frac{i^{n+k}}{(n+k!)} \frac{i^{k}}{k!}\left(\frac{k r}{2}\right)^{n+k}\left(\frac{k r}{2}\right)^{k} \\
& =i^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(n+k)!} \frac{1}{k!}\left(\frac{k r}{2}\right)^{n+2 k} \\
C_{n} & =i^{n} J_{n}(k r)
\end{aligned}
$$

For $n<0$

$$
C_{n}=\sum_{k=0}^{\infty} \frac{i^{|n|+k}}{(|n|+k)!} \frac{i^{k}}{k!}\left(\frac{k r}{2}\right)^{|n|+k}\left(\frac{k r}{2}\right)^{k}
$$

So for $n<0$

$$
\begin{aligned}
& C_{n}=i^{|n|} J_{|n|}(k r) \\
&=(-1)^{n} i^{n} J_{|n|}(k r) \\
& \equiv i^{n} J_{n}(k r) \quad \text { where } \text { for } n<0 \\
& \quad J_{n}(k r) \equiv(-1)^{|n|} J_{|n|}(k r)
\end{aligned}
$$

Putting together these expressions

$$
e^{i \vec{k} \cdot \vec{r}}=e^{i k r \cos \Delta \phi}=\sum_{n=-\infty}^{\infty} J_{n}(k r) i^{n} e^{i n \Delta \phi}
$$

c) From the fourier integral

$$
\begin{align*}
& f(\vec{k})=\int d^{2} r e^{-i \vec{k} \cdot \vec{r}} f(\vec{r}) \tag{*}\\
& f(\vec{r})=\int \frac{d^{2} k}{(2 \pi)^{2}} e^{i \vec{k} \cdot \vec{r}} f(\vec{k}) \tag{4}
\end{align*}
$$

- First note that by complex conjugation

$$
\left(e^{i \vec{k} \cdot \vec{r}}\right)^{*}=e^{-i \vec{k} \vec{r}}=\sum_{n} J_{n}(k r)(-i)^{n} e^{-i n \Delta \phi} \quad(\notin \notin)
$$

Here $\Delta \phi=\phi_{k}-\phi_{r}$

- Substituting (A) into (A), expanding $f(\vec{r})$

$$
f(\vec{r})=\sum_{m} \frac{1}{2 \pi} f_{m}(r) e^{i m \phi_{r}}
$$

- Using the relation

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{t i n \phi_{r}} e^{i m \phi_{r}}=\delta_{m,-n}
$$

- Which collapses the m-sum and sets $f_{m}(r) \rightarrow f(r)$ yields finally:

$$
f(\vec{k})=\sum_{n} \int_{0}^{\infty} r d r J_{n}(k r)(-i)^{n} e^{-i n \phi_{k}} f_{-n}(r)
$$

Changing $n=-l$ using

$$
\begin{aligned}
J_{-l}(k r)(-i)^{-l} & =(-1)^{l} J_{l}(k r) i l \\
& =(-i)^{l} J_{l}(k r)
\end{aligned}
$$

Yields

$$
f(\vec{k})=\sum_{l} \int r d r J_{l}(k r)(-i)^{l} e^{i l \phi_{k}} f_{l}(r)
$$

- Yielding, upon comparison (む) the fourier series:

$$
f(\vec{k})=\sum_{l} \frac{1}{2 \pi} f_{l}(k) e^{i l \phi_{k}}
$$

The result:

$$
f_{l}(k)=2 \pi \int_{0}^{\infty} r d r J_{l}(k r)(-i)^{l} f_{l}(r)
$$

To prove the second result we only need to realize that $\left(女^{4}\right)$ is essentially the same $\stackrel{u_{p}+t_{0}(2 \pi)^{2}}{i-s)}(\ngtr)$. Exchanging k and r and taking the conjugate yields (after dividing by $(2 \pi)^{2}$)

$$
f_{l}(r)=\frac{2 \pi}{(2 \pi)^{2}} \int_{0}^{\infty} k d k J_{l}(k r)(+i)^{l} f_{l}(k)
$$

d) We have

$$
\int \frac{d^{2} k}{(2 \pi)^{2}} e^{i \vec{k} \cdot(\vec{x}-\vec{y})}=\frac{1}{r} \delta\left(r-r^{\prime}\right) \delta\left(\phi_{r}-\phi_{r}^{\prime}\right) \quad(54)
$$

- Then write the exponents as

$$
\begin{aligned}
& e^{i \vec{k} \vec{x}}=\sum_{n} J_{n}(k r) i^{n} e^{i n\left(\phi_{k}-\phi_{r}\right)} \\
& e^{-i \vec{k} \cdot \vec{y}}=\sum_{m} J_{m}\left(k r^{\prime}\right)(-i)^{m} e^{-i m\left(\phi_{k}-\phi_{r}^{\prime}\right)}
\end{aligned}
$$

And integrate over ϕ_{k} using

$$
\int \frac{d \phi_{k}}{2 \pi} e^{i n \phi_{k}} e^{-i m \phi_{k}}=\delta_{n m}
$$

The Som collapses the m-sum yielding

$$
\int \frac{d^{2} k}{(2 \pi)^{2}} e^{i \vec{k} \cdot(\vec{x}-\hat{y})}=\sum_{n} \int_{0}^{\infty} \frac{k d k}{2 \pi} J_{n}(k r) J_{n}\left(k r^{\prime}\right) e^{-i n\left(\phi_{r}-\phi_{r}^{\prime}\right)}
$$

The r.h.s of Eq (54) is compare these two

$$
\sum_{n} \frac{1}{r^{\prime}} \delta\left(r-r^{\prime}\right) e^{-i n\left(\phi_{r}-\phi_{r^{\prime}}\right)}
$$

Comparison of the fourier series yields:

$$
\int_{0}^{\infty} \frac{k d k}{2 \pi} J_{n}(k r) J_{n}\left(k r^{\prime}\right)=\frac{1}{r} \delta\left(r-r^{\prime}\right)
$$

- Now the consistency is straightforward:

$$
\begin{aligned}
f_{n}(r) & =\int_{0}^{\infty} \frac{k d k}{2 \pi} J_{n}(k r) i^{l}[\underbrace{2 \pi \int_{0}^{\infty} r^{\prime} d r^{\prime} J_{n}\left(k r^{\prime}\right)(-i)^{l} f_{n}\left(r^{\prime}\right)}_{0}] \\
& =\int_{0}^{\infty} r_{n}^{\prime} d r^{\prime} \frac{1}{r} \delta\left(r-r^{\prime}\right) f_{n}\left(r^{\prime}\right) \\
f_{n}(r) & =f_{n}(r)
\end{aligned}
$$

Problem 5
a) We expand

$$
\begin{equation*}
S(t) \equiv A e^{-i\left(\omega_{c} t+\varepsilon \cos \left(\omega_{0} t\right)\right)} \tag{5.1}
\end{equation*}
$$

In a Fourier series

$$
\begin{equation*}
S(t)=\sum_{n} \frac{I_{0}}{T_{0}} S_{n} e^{-i \omega_{n} t} \tag{5,2}
\end{equation*}
$$

where $\omega_{n}=2 \pi n / T_{0}$. Here $\omega_{c}=2 \pi n_{c} / T_{0}$.

* Then

$$
S(t)=A e^{-i \omega_{c} t} e^{-i \varepsilon \cos \left(\omega_{0} t\right)}
$$

- Expand

$$
e^{-i \varepsilon \cos \left(\omega_{0} t\right)}=\sum_{n} J_{n}(\varepsilon)(-i)^{n} e^{-i n \omega_{0} t}
$$

So since $\omega_{c}=n_{c} \omega_{0}$ we find

$$
S(t)=\sum_{n} A J_{n}(\varepsilon)(-i)^{n} e^{-i\left(n+n_{c}\right) \omega_{0} t}
$$

Let $l=n+n_{c} \quad n=l-n_{c}$

Then

$$
\begin{equation*}
S(t)=\sum_{l} A J_{l-n_{c}}(\varepsilon)(-i)^{l-n_{c}} e^{-i l \omega_{0} t} \tag{5.3}
\end{equation*}
$$

So comparing $(5,3)$ with $(5,2)$ yields

$$
\begin{equation*}
\frac{S_{l}}{T_{0} A}=J_{l-n_{c}}(\varepsilon)(-i)^{l-n_{c}} \tag{5,4}
\end{equation*}
$$

i) For $\varepsilon \ll y \quad S(t)=A e^{-i \omega_{c} t}$

Then

$$
S_{A}^{A T_{0}}=\delta_{l n_{c}}=\int_{0}^{T} \frac{S(t)}{A T_{0}} e^{i \omega_{0} l t}
$$

Then all the power is in the carrier frequency effective
ii) For $\varepsilon=40$ the ${ }^{\text {^ }}$ frequency ranges from $\omega_{0}(820-40)$ to $(820+40) \omega_{0}$.

And the band width is 80 wo
iii) Recall that

$$
\begin{equation*}
\int_{0}^{T} d t|S(t)|^{2}=\frac{1}{T_{0}} \sum_{n}\left|S_{n}\right|^{2} \tag{5.5}
\end{equation*}
$$

- To prove this just substitute Eq (5.2) into the LHS of Eq (5.5), For the current case this implies

$$
\int_{0}^{T} d T|S(T)|^{2}=A^{2} T=\frac{1}{T} \sum_{l} J_{l-n_{c}}^{2}(\varepsilon) T^{2} A^{2}
$$

O_{r}

$$
\sum_{l} J_{l-n_{c}}^{2}(\varepsilon)=1
$$

* This is confirmed by the mathematica. In principle we should sum $\ell=-\infty \ldots+\infty$. But to good numerical we only need to sum where the ${S_{n}}^{\prime}$'s have significant strength

Homework 3 Mathematica Notebook

This is a discrete plot of the bessel sum for epsilon unity.
$\ln [3]:=$
DiscretePlot[BesselJ[n-820, 1]^2, $\{\mathrm{n}, 810,830\}$, PlotRange $\rightarrow\{0,1\}$.

Now for epsilon $=0.1$ we find that the power spectrum is very nearly unity for one fourier mode.
$\ln [4]=\operatorname{DiscretePlot}\left[B e s s e l J[n-820,0.1]^{\wedge} 2,\{n, 810,830\}\right.$, PlotRange $\left.\rightarrow\{0,1\}.\right]$

Now for epsilon $=40$ we find that the power spectrum is broader:
$\ln [8]:=\operatorname{DiscretePlot}\left[B e s s e l J[n-820,40]^{\wedge} 2,\{n, 770,870\}\right.$, PlotRange $\left.\rightarrow\{0,0.05\}\right]$

The final part looks at the sum
$\ln [10]:=\operatorname{Sum}\left[\operatorname{Bessel} \mathbf{J}[\mathbf{n}-\mathbf{8 2 0}, 40 .]^{\wedge} 2,\{n, 700,900\}\right]$
Out[10]= 1 .

