11.2.1 Arfken Cauchy Riemann
a) $f(z)=u+i v$

Recall

$$
\begin{aligned}
\frac{d f}{d z} & =\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{1}{i} \frac{\partial}{\partial y}\right)(u+i v) \\
& =\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{1}{2}\left(\frac{-\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)
\end{aligned}
$$

Now by Cauchy Riemann $\partial u / \partial x=\partial v / \partial y \quad-\partial u / \partial y=\partial v / \partial x$ and thus

$$
\frac{d f}{d z}=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=V_{x}-i V_{y}
$$

b) Take $\nabla \cdot V=\frac{\partial}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial}{\partial y} \frac{\partial u}{\partial y}=\nabla^{2} u$

Now $\nabla^{2}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
So $4 \frac{\partial^{2}}{\partial z \partial \bar{z}}(u+i v)=0$ since $\frac{\partial f}{\partial \bar{z}}=0$
So $\quad \nabla^{2} u=\nabla^{2} v=0$

Now

C

$$
\begin{aligned}
\nabla x v & =\frac{\partial}{\partial x} V_{y}-\frac{\partial}{\partial y} V_{x} \\
& =\frac{\partial}{\partial x} \frac{\partial u}{\partial y}-\frac{\partial}{\partial y} \frac{\partial u}{\partial x}=0
\end{aligned}
$$

Integrals

- 1.3.3. Consider a straight line path first $t \in[0,1]$

$$
z(t)=z_{1}+\Delta z t \quad \text { with } \quad z_{2}-z_{1}=\Delta z
$$

Then for straight line:

$$
\begin{aligned}
\int_{z_{1}}^{z_{2}} d z z^{n} & =\int_{0}^{1} \Delta z d t\left(z_{1}+\Delta z t\right)^{n} \\
& =\left.\Delta \not t \frac{\left(z_{1}+\Delta z t\right)^{n+1}}{n+1}\right|_{t=0} ^{1} \\
& =\frac{z_{2}^{n+1}}{n+1}-\frac{z_{1}^{n+1}}{n+1}
\end{aligned}
$$

we used that

$$
z_{1}+\left.\Delta z t\right|_{t=1} ^{=z_{2}} \quad \text { and } \quad z_{1}+\left.\Delta z t\right|_{t=0}=z_{1}
$$

- Similarly for a circlular are

$$
z=r e^{i \theta} \quad d z=r e^{i \theta} i d \theta
$$

Then

$$
\begin{aligned}
& \int_{z_{1}}^{z_{2}} d z z^{n}=\int_{\theta_{1}}^{\theta_{2}} r e^{i \theta} i d \theta r^{n} e^{i n \theta} \\
&=\left.r^{n+1} e^{i(n+1) \theta} \frac{i}{i(n+1)}\right|_{\theta_{1}} ^{\theta_{2}} \\
&=\frac{z_{2}^{n+1}}{n+1}-\frac{z_{1}^{n+1}}{n+1} \leftarrow \text { same as } \\
& \text { for straight }
\end{aligned}
$$

where $z_{2}=r e^{i \theta_{2}}$ and $z_{1}=r e^{i \theta_{1}}$, Thus for either path:

$$
\begin{aligned}
\int_{z_{1}}^{z_{2}} d z\left(4 z^{2}-3 i z\right) & =\frac{4}{3} z^{3}-\left.\frac{3}{2} i z^{2}\right|_{3+4 i} ^{4-3 i} \\
& =\frac{76}{3}-\frac{707}{3} i
\end{aligned}
$$

τ mathematical
To do the last and evaluate the numerical value at the two limits I used mathematic
b) Then in the previous example

$$
\frac{\partial f}{\partial \bar{z}}=0 \quad \text { where } \quad f=4 z^{2}-3 i z
$$

The fact that $\partial f / \partial \bar{z}=0$ show that the function is holomorphic
While for the current case

$$
\begin{aligned}
f & =\left(\frac{(z+\bar{z})}{2}\right)^{2}+-i\left(\frac{(z-\bar{z})}{2 i}\right)^{2} \\
\frac{\partial f}{\partial \bar{z}} & =\frac{z+\bar{z}}{2}-i\left(\frac{z-\bar{z}}{2 i}\right)-\frac{1}{i} \\
& =x+y \neq 0 \quad \text { Now its not holomorphic }
\end{aligned}
$$

(3) Arfken 11.3.7 - Integrals Around Loops
a)

$$
\begin{aligned}
\oint \frac{d z}{z(z+1)} & =2 \pi i\left[\begin{array}{c}
\operatorname{Res} f+\operatorname{Res} f \\
z=0
\end{array}\right] \\
& =2 \pi i\left[\begin{array}{c}
z=-1
\end{array}\right] \\
& =-1]=0
\end{aligned}
$$

b) The poles are at $z=-3, z=-\frac{1}{2}$ and $z=+\frac{1}{2}$

$$
f(z)=\frac{1}{8} \frac{1}{(z-1 / 2)(z+1 / 2)^{2}(z+3)}
$$

- The expansion of $f(z)$ near the poles $1 / 2$ and $-1 / 2$
(1)

$$
\begin{aligned}
& f(z)=\frac{1}{8} \frac{1}{(z-1 / 2)} \frac{1}{(1 / 2+1 / 2)^{2}(1 / 2+3)}+\cdots \simeq 1 / 2 \\
& f(z)=\frac{1}{(z-1 / 2)} \cdot \frac{1}{28}+\cdots \quad z \simeq 1 / 2
\end{aligned}
$$

(2) $f(z)=\frac{c}{(z+1 / 2)^{2}}+\frac{-3 / 100}{(z+1 / 2)}+\cdots \quad z=-1 / 2$

Used mathematical here to determine this series: to find the residue one just expands the function at the specified point. Mathematica is very good at this, e.g. Series [1/(x-1/2)], x, 0, 4]
Then clockwise path

$$
\begin{aligned}
I & =-2 \pi i\left[\begin{array}{l}
\operatorname{Res} f+\operatorname{Res} f \\
z=1 / 2 \\
z=-1 / 2
\end{array}\right]=-2 \pi i\left[\frac{1}{28}-\frac{3}{100}\right] \\
& =-2 \pi i / 175
\end{aligned}
$$

Trigonometric Integrals
a)

$$
\begin{aligned}
I & =\int_{0}^{2 \pi} \frac{d \theta}{(1+a \cos \theta)} \\
& =\int \frac{d z}{i z} \frac{1}{(1+a(z+1 / z) / 2)} \leftarrow \cos \theta=z+\frac{1}{z} \\
& =\frac{1}{i} \int d z \frac{1}{\frac{a}{2} z^{2}+z+\frac{a}{2}}
\end{aligned}
$$

- Now we look for the roots of the denominator

$$
a z^{2}+2 z+a=0
$$

Which has roots:

$$
z_{ \pm}=\frac{-1 \pm \sqrt{1-a^{2}}}{a} \text {, but only the plus }
$$

root lies within the circle:

$$
\begin{aligned}
& f(z)=\frac{2}{a z^{2}+2 z+a}=\frac{2}{a\left(z-z_{+}\right)\left(z-z_{-}\right)} \\
& \operatorname{Res} f=\frac{2}{a\left(z_{+}-z_{-}\right)}=\frac{2}{2 \not \alpha} \frac{\alpha}{\left(1-a^{2}\right)^{1 / 2}}
\end{aligned}
$$

So

$$
I=\frac{1}{i} \frac{2 \pi i}{\left(1-a^{2}\right)^{1 / 2}}=\frac{2 \pi}{\left(1-a^{2}\right)^{1 / 2}}
$$

This clearly satisfies the minimal limit, i.e. that for $a=0 \quad I=2 \pi$
b) Now consider

$$
I=\int_{0}^{2 \pi} d \theta\left(1-2 \cos \theta t+t^{2}\right)^{-1}
$$

- with the substitution $\cos \theta=(z+1 / z) / 2$ and $d \theta=d z / i z$ we have

$$
I=\int_{0} \frac{d z}{i z} \frac{1}{\left(1-t(z+1 / z)+t^{2}\right)}
$$

- Thus we are led to looking for roots of:

$$
-t z^{2}+\left(1+t^{2}\right) z-t=0
$$

Which has root z $z_{>} \equiv \frac{1}{t}$ and $t \equiv z<$ nealty.

- Then

$$
I=\int_{\infty} \frac{d z}{i} \frac{1}{-t\left[z-z_{<}\right]\left[z-z_{>}\right]}
$$

- Then only $z_{<} \equiv t$ is in the circle

$$
\begin{aligned}
& I=\frac{2 \pi i}{-i t} \operatorname{Res}_{<} \frac{1}{\left(z-z_{<}\right)\left(z-z_{>}\right)} \\
& I=\frac{2 \pi}{-t\left(z_{<}-z_{>}\right)}=\frac{2 \pi}{-t(t-1 / t)}=\frac{2 \pi}{\left(1-t^{2}\right)}
\end{aligned}
$$

c) The integral

$$
I=\int_{0}^{2 \pi} \frac{d \theta}{(1+a \cos \theta)} \text { diverges for } a \geqslant 1
$$

when the denominator can vanish. Thus when viewed as a complex function of a we expect a singularity for $a \rightarrow 1$. This is what is seen in the answer:

$$
I(a)=\frac{2 \pi}{\left(1-a^{2}\right)^{1 / 2}}
$$

Problem 5 - Fourier Integrals

$$
\begin{aligned}
I(t) & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} \frac{2 \gamma}{\omega^{2}+\gamma^{2}} \\
& =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} \frac{2 \gamma}{(\omega+i \gamma)(\omega-i \gamma)}
\end{aligned}
$$

- For $t<0 \quad e^{-i \omega t} \longrightarrow 0$, while for $t>0$ we have $e^{-i \omega t} \longrightarrow 0$. Thus we have to clase the contour
 above for $t<0$, and chose below for $t>0$.
\longleftarrow See picture.
for $t>0$
- For $t<0$ we find, $f(z) \equiv\left(2 \gamma / z^{2}+\gamma^{2}\right) e^{-i \omega t}$:

$$
I(t)=\frac{1}{2 \pi} 2 \pi i \operatorname{Res}_{z=i \gamma} f(z)=e^{\gamma t}
$$

this thing is the
Near ir we analyzed $f(z)$ as follows: residue by definition

$$
f=\frac{2 \gamma}{(z+i \gamma)} \frac{1}{(z-i \gamma)} e^{-i \omega t} \simeq\left(\frac{2 \gamma}{2 i \gamma} e^{-i(i \gamma t)}\right)^{k} \frac{1}{z-i \gamma}
$$

- Similarly for $t>0$ we have

$$
I(t)=\frac{1}{2 \pi}(-2 \pi i) \text { Res } f(z)=e^{\gamma t}
$$

"wrong"/clockise circulation of pole
Near -ix we extracted the Residue of $f(z)$ as:

$$
f(z)=\frac{2 \gamma}{(z+i \gamma)} \frac{1}{(z-i \gamma)} e^{-i \omega t} \simeq \frac{2 \gamma}{-2 i \gamma} e^{-i(-i \gamma) t} \frac{1}{(z+i \gamma)}
$$

this is the residue

- Thus

$$
I(t)= \begin{cases}e^{\gamma t} & t<0 \\ e^{-\gamma t} & t>0\end{cases}
$$

b) $I_{\varepsilon}(t) \equiv-\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi i} \frac{1}{\omega+i \varepsilon} e^{-i \omega t}$

- The arguement is very similar to the previous item. For $t>0$ we close below Land will pick up a pole) while for $t<0$ we close above (and the function is analytic there)

for $t>0$
- Thus \wedge wrong way around pole

$$
\begin{aligned}
I_{\varepsilon}(t) & =-2 \pi i \operatorname{Res}_{z=-i \varepsilon} \frac{-1}{2 \pi i} \frac{1}{(\omega+i \varepsilon)} e^{-i \omega t} \\
& =e^{-i(-i \varepsilon) t}=e^{-\varepsilon t} \quad \ell^{\text {if } \operatorname{Im} \omega \geqslant 0} \operatorname{Im} \omega \geqslant 0 \text { Singularity }
\end{aligned}
$$

- While for $t<0$ our function $\frac{1}{\omega+i \varepsilon}$ is analytic in the upper half plane. For an analytic function.

$$
\oint f(z)=0
$$

- Summarizing

$$
I_{\varepsilon}(t)=\theta(t) e^{-\varepsilon t} \longleftarrow \text { for } t=0 \text { the integral }
$$ is ambiguous and gives $\frac{1}{2}$

C) Now

$$
\begin{aligned}
\frac{d}{d t} \theta(t) & =\lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{i}{\omega+i \varepsilon} \frac{d e^{-i \omega t}}{d t} \\
\delta(t) & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t}=\delta(t)
\end{aligned}
$$

The nearest
a) i) $\frac{1}{\left(z^{2}-4\right)^{1 / 2}}$ here $R=2$, singularities are
ii) $\sin (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}$

$$
=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots
$$

Then R,O.C is:

$$
\begin{aligned}
& (R)^{-1}=\limsup _{n \rightarrow \infty}\left(\frac{1}{n!}\right)^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{\left(n^{n} e^{-n}\right)^{1 / n}}=\frac{1}{n e^{-1}} \\
& R^{-1}=0 \quad \text { or } \quad R=\infty
\end{aligned}
$$

iii) Then $\log (z+4)$ has its nearest singularity at $z=-4$. R.O.C is therefore 4.
b) $J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!n!}\left(\frac{z}{2}\right)^{2 n}$

So comparison with the canonical $\sum_{k}^{\infty} a_{k} z^{k}$ gives

$$
\left|a_{k}\right|=\frac{1}{(k!k!)^{1 / 2} 2^{k}}=\frac{1}{k!2^{k}}
$$

Then using the formula,

$$
\lim _{k \rightarrow \infty}\left|a_{k}\right|^{1 / k}=\frac{1}{\left(k^{k} e^{-k} 2^{k}\right)^{1 / k}}=\frac{1}{k e^{-1} \cdot 2}
$$

Thus $\left|a_{k}\right|^{1 / k} \longrightarrow 0$ as $k \rightarrow \infty$
Thus, $R=\frac{1}{\lim \left|a_{k}\right|^{1 / k}}=\infty$

$$
k \rightarrow \infty
$$

