
Problem 1. Integrals with Principal Values and Branch Singular-
ities

Do the following integrals:

(a) By considering (1− e2ix)/x2 show that∫ ∞
0

dx

(
sinx

x

)2

=
π

2
(1)

(b) Next we consider two related itengrals

(i) Evaluate ∫ ∞
0

dx
xa−1

1 + x
=

π

sin(πa)
(2)

(ii) Evaluate ∫ ∞
0

xa−1 P
1− x2

=
π(1 + cos(πα))

2 sin(πα)
(3)

where P denotes the principal value distribution. Why does Eq. (2) have a pole
at a = 1 while Eq. (3) does not? One way to procede is to partial fraction

1

1− x2
=

1

2

1

1− x
+

1

2

1

1 + x
(4)

(c) Evalute ∫ ∞
0

dx
(log x)2

1 + x2
=
π3

8
(5)

Hint use the contour shown below and for simplicity take the cut of the logarithm from
(0− i∞, 0)
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Problem 2. Analytic continuation of atanh(z) and friends

The problem has many (often easy) parts. Write as little as possible. Just
enough to show that you know what is going on.

(a) First show that for a real numbers1 y

sin(iy) =i sinh(y) (10)

cos(iy) = cosh(y) (11)

tan(iy) =i tanh(y) (12)

and determine the Taylor series of

tanh(y) = y + . . . (13)

to third order in small y inclusive.

(b) From its definition

tanh(y) ≡ ey − e−y

ey + e−y
(14)

show by elementary algebra that

y = atanh(x) =
1

2
log

(
1 + x

1− x

)
. (15)

Other formulas you should know how to derive (see part (g)) are

asinh(x) = log
(
x+
√
x2 + 1

)
(16)

acosh(x) = log
(
x+
√
x2 − 1

)
(17)

These are useful below.

(c) Determine the taylor series of

atanh(x) = x+ . . . (18)

near the origin to third order in x.

1These hold for complex numbers as well, and lead to many familiar identities, e.g.

cosh2(z)− sinh2(z) =1 (6)

sin(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y) (7)

cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y) (8)

(9)

etc
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(d) By composing the taylor series in Eq. (13) and Eq. (18), verify that through third order
inclusive we have

tanh(atanh(x)) = x+O(x4) (19)

(e) Then use elementary means to show for |x| < 1 on the real axis that∫ x

0

dx′

1− x′2
= atanh(x) (20)

Extending these results to the complex plane, atanh(z, γ) for a point z in the complex plane
and path γ is defined as

atanh(z, γ) =

∫
γ

dz′

1− z′2
(21)

where the path γ(z′) connects the origin, z′ = 0, to the point z′ = z. Depending on how
many times the path encircles the branch points at 1,−1, you will get different answers for
this function. atanh(z, γ) thus depends on the path only through the path’s topology.

Different choices for the cut lines conventionally dictate the canonical value of this func-
tion at a point z by specifying the topology of the allowed path. Specifically the canonical
value (for a given choice of cut) is found by requiring that the path should not cross the cut
line. This limits a path’s topology.

Naively integrating Eq. (21) yields

atanh(z, γ) =
1

2
log

(
1 + z

1− z

)
(22)

The result is ambiguous until the paths are defined which give definite meaning to the
logarithims as

1

2
log

(
1 + z

1− z

)
≡1

2

∫
γ

dz′

1 + z′
+

1

2

∫
γ

dz′

1− z′
(23)

=

∫
γ

dz′

1− z′2
(24)

Here atanh(z, γ) is defined so that at2 0 + iε (our starting point) atanh(z, γ) agrees with the
power series given by Eq. (18). Compare three different choices for the branch cuts:

A. The branch cuts are chosen to be on the real axis (−∞,−1) and (1,∞). Lets call this
choice A. (This is what is used in Mathematica.)

B. Another equally valid choice of branch cuts are the lines in the imaginary directions,
(−1− i∞,−1) and (1− i∞, 1). Lets call this choice B.

C. (Optional) Analyze this one for yourself but do not include it in your home-
work – it will not be graded. Still another choice are the lines along the real axis
(−∞,−1) and (−∞, 1). Lets call this choice C.

2Here and below ε notates a small positive real number
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(f) Draw the three choices of cuts. For each of our three cut choices, determine the
canonical value of atanh(z) at the following points, i.e. fill in the table. Some entries
are filled to provide some answers but you should explain these values.

Point Cut A Cut B Cut C (Optional)

0 + iε 0 (definition) 0 (definition) 0 (definition)
0− iε iπ (explain me)
3 + iε 1

2
log(2) + iπ

2
(explain me)

3− iε
1− 2i+ ε
1− 2i− ε
−3 + iε
−3− iε

(You can check your results for column A by comparing with Mathematica )

(g) Along the lines of part (a) show by algebraic means that

asin(x) =
1

i
log(ix+

√
1− x2) (25)

You can check with Mathematica that the two have the same series,

In[68]:= Series[ ArcSin[x], {x, 0, 11} ]

Out[68]= x +
x3

6
+
3 x5

40
+
5 x7

112
+
35 x9

1152
+
63 x11

2816
+ O[x]12

In[67]:= Series[ 1 / I Log[ I x + Sqrt[1 - x^2]], {x, 0, 11} ]

Out[67]= x +
x3

6
+
3 x5

40
+
5 x7

112
+
35 x9

1152
+
63 x11

2816
+ O[x]12

(h) Show that for real x for |x| < 1

asin(x) =

∫ x

0

dx′√
1− x′2

(26)

and ∫ 1

0

dx′√
1− x′2

=
π

2
(27)

For complex value z define

asin(z, γ) ≡
∫
γ

dz′√
1− z′2

(28)

where we take a path γ(z′) to connect the origin z′ = 0 to point z′ = z.
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(i) Show that for real a with a > 1 we have the real integrals∫ a

1

dx√
x2 − 1

= log(a+
√
a2 − 1) (29)

Hint: look at the part (a) especially the footnote. Remark: Often when dealing
with the forms

√
x2 − 1 and

√
x2 + 1 or 1

1+x2
and unbounded intervals, hyperbolic trig

substitutions are a better choice than trig substitions.

(j) First define a canonical value to asin(2 + iε, γ) by placing a branch cut from (−∞,−1)
and (1,∞) (You can check your result with Mathematica which uses the same choices):

Ans :
π

2
+ i log(2 +

√
3) (30)

Here we have taken the canonical path γA from the origin to 2 + iε.

(k) What are all possible values of asin(2 + iε, γ)? For each possible value list the winding
numbers (relative to the canonical path) around each branch point. For instance, you
definitely should consider path γB. Relative to path γA (the canonical path for this
choice of branch cuts) path B has a winding number +1 around the branch point z = 1,
since the combined path3 γB ⊕ −γA encircles the the branch point at z = 1 once in
a counter-clockwise fashion. Similarly, consider the path γC (which relative to γA has
winding number Wz=1 = +2) and discuss its value. Draw other paths which encircle
−1 and 1 in arbtitrary ways and determine their values.

(l) We have given two examples of how to define log(f(z), γ). Specifically we always define
as

log(f(z), γ) ≡
∫
γ

dz
f ′(z)

f(z)
(31)

Thus
1

2
log

(
1 + z

1− z

)
≡
∫
γ

dz′

1− z′2
. (32)

3−γA notates a path in the opposite direction of A
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Similarly

asin(z) =
1

i
log(iz +

√
1− z2) ≡

∫
γ

dz′√
1− z′2

(33)

How would you define
acosh(z) (34)

for an arbitrary point in the plane as an integral.

Problem 3. Kramers Kronig

In class we showed that the Kramers-Kronig relations read

ReGR(ω) =P
∫
dω′

π

ImGR(ω)

ω′ − ω
(35)

ImGR(ω) =− P
∫
dω′

π

ReGR(ω)

ω′ − ω
(36)

where GR(ω) is a Fourier transform of a causal function

GR(ω) =

∫ ∞
0

dτ e+iωτGR(τ) (37)

(a) Show that if GR(τ) is a real function Eq. (35) can be written as

ReGR(ω) =
2

π
P
∫ ∞

0

dω′
ω′ImGR(ω′)

ω′2 − ω2
(38)

ImGR(ω) =− 2ω

π
P
∫ ∞

0

dω′
ReGR(ω′)

ω′2 − ω2
(39)

Hint if GR(τ) is real, then its Fourier transform has certain properties.

Take a response function of a damped harmonic oscillator

GR(ω) =
−1

2

1

ω − ωo + iΓ
+

1

2

1

ω + ωo + iΓ
(40)

Next week we will show by contour integration that in coordinate space this corresponds to
the following real causal function derived in class

GR(τ) = θ(τ)e−Γτ sin(ωoτ) (41)

with τ = t− to. You may wish to do this excercise now, but save the solution for next week.

(b) Check the Kramers-Kronig numerically for the response function of a damped harmonic
oscillator (Eq. (40)) using Mathematica with ω0 = 1 and Γ = 0.2. Specifically, integrate
the imaginary part along the real axis using Eq. (38) and show numerically that it
equals the analytical real part. (Needless to say do not use Mathematica’s built in
principal value capabilities). To do the integral you will need to choose some way to
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regulate the principal value distribution. A simple way in this case is just to integrate
up to ω − 10ε and then integrate from ω + 10ε for some small value (say ε = 0.001)
which you can adjust.

Make a plot of your numerical real part from 0.1 . . . 2 and the analytical real part for
this response function in the same range. You should find with ε = 0.002

I attatch a sample mathematica notebook that does the random integral

I(a) = P
∫ π/2

−π/2
dx

eax

x
(42)

so you can see the necessary Mathematica commands.
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Help with mathematica:

For numerical work define functions as with ?NumericQ, or it wont work a lot of the time. This tells 
mathematica that we are expecting a number here

f[x_?NumericQ, a_?NumericQ] := Exp[a x] / x

In[99]:= { f[y, 1], f[3., 1.] } (* f[x,a] will only operate if given a number *)

Out[99]= {f[y, 1], 20.0855}

Here I show how (very primatively) to do a numerical principal value integral 

In[116]:= myintegral[a_?NumericQ, eps_?NumericQ] :=
NIntegrate[f[x, a], {x, -Pi / 2 , -5 eps } ] + NIntegrate[f[x, a], {x, 5 eps, Pi / 2} ]

Here I show how the value of myintegral for different values of  “a” and the smoothening parameter 
“epsilon”, eps=1.e-4 and eps=1.e-2.

In[115]:= Plot[ {myintegral[a, 10.^(-4)], myintegral[a, 10.^(-2)] }, {a, 1, 2} ]

Out[115]=

1.0 1.2 1.4 1.6 1.8 2.0

4
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