
Problem 1. Green functions

(a) Determine the green function of the following differential equation between x ∈ [0, a]
and use it to solve [

− d2

dx2
+ k2

]
y = 1 y(0) = y(a) = 0 (1)

A similar equation arises hen determining the potential from a point charge between
two grounded parallel plates.

(b) Determine the green function of the following differential equation between r ∈ [0, R][
−1

r2
∂

∂r
r2
∂

∂r
+
`(`+ 1)

r2

]
G(r, r0) = δ(x−x0) y(r) regular at origin and y(R) = 0.

(2)
which arises when finding the potential from a ring of charge inside a grounded sphere.
Here ` = 0, 1, 2, 3, . . . is a non-negative integer.

(c) Not graded no redo

(i) Determine a green function which vanishes for x0 > x for the following differential
equation:[

x2
d2y

dx2
+ x

dy

dx
− 4

]
G(x, x0) = δ(x− x0) G(x, x0) = 0 for x0 > x (3)

Use it to find a general solution to the following differential equation[
x2
d2y

dx2
+ x

dy

dx
− 4

]
y = Kxa (4)

where a is a > 2. You should find

yp(x) =
Kxa

a2 − 4
(5)

By analytically continuing in a we may use yp(x) for a < 2. (You may use
mathematica to do definite integrals)

(ii) Show that for a→ 2 + ε, that the general solution takes the form

y(x) = C1(ε)x
2 +

C2

x2
+
K
4
x2 log(x) +O(ε) (6)

Thus, the particular solution can be taken as

yp(x) =
K
4
x2 log(x) (7)

in this case.
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(iii) Finally, consider [
x2
d2y

dx2
+ x

dy

dx
− 4

]
y = Kxa log(x) (8)

where Re(a) > 2. Show that the particular solution takes the form

yp(x) =

(
K

a2 − 4

)
xa log(x) + xa

∂

∂a

(
K

a2 − 4

)
(9)

=

(
K

a2 − 4

)
xa log(x) + xa

(
−2a

(a2 − 4)2

)
(10)

(You may use mathematica to do definite integrals.) These are useful when de-
termining the perturbative expansion of the modified Bessel functions I2(x) and
K2(x) near zero – see the problem below.

Problem 2. Damped harmonic oscillator

Consider the equation of motion of a damped harmonic oscillator for times t0[−a, a][
m
d2

dt2
+mη

d

dt
+mω2

0

]
y(t) = f(t)with x(t) = 0 for t < −a. (11)

(a) Determine the two homogeneous solutions to the differential equation.

y1 = C1e
−iω1t + C2e

−iω2t

Do not assume that η is small.

(b) What are the two homogeneous solutions to the differential equation when η/2 = ωo
when ω1 = ω2. Notice that the non-trivial second homogeneous solution is

∂y1
∂ω

∣∣∣∣
ω=ω1

(12)

Without introducing Fourier transforms determine the Green function to the differen-
tial equation in the limit η/2 = ωo.

(c) By taking Fourier transforms, show that the retarded Green function can be written
for generic η as

GR(t, to) =

∫ ∞
−∞

dω

2π

−e−iω(t−to)

m(ω − ω1)(ω − ω2)
(13)

(d) Perform the Fourier transform in Eq. (13) using complex analysis and determine the
retarded Green function.

(e) Consider the limit ω1 = ω2 where the retarded Green function takes the form

GR(t, to) =

∫ ∞
−∞

dω

2π

−e−iω(t−to)

m(ω − ω1)2
(14)

Determine the green function by Fourier transform in this case, and show that it
reproduces the results of part (b).
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Problem 3. Classify

Classify all the singular points (both at x = 0 and x→∞ on the real axis) of the following
differential equations. Check your results, by examining the properties of these equations at
the DLMF site.

(a) Airy equation
y′′ = xy (15)

(b) Hypergeometric equations

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − ab y = 0 (16)

(c) Kummer’s confluent hypergeometric equation

xy′′ + (b− x)y′ − ay = 0 (17)

For all regular singular points determine the leading behavior close to the singularity

y = C1x
s1 + C2x

s2 (18)

with specific s1 and s2. For all irregular singular points, determine the asymptotic forms

y = C1e
S1(x) + C2e

S2(x) (19)

Problem 4. Series solution near a regular point

(a) Find the Taylor expansion about x = 0 of the solution to the initial-value problem

(x− 1)(x− 2)y′′ + (4x− 6)y′ + 2y = 0 y(0) = 1 and y′(0) = 1 (20)

You should find a recursion relation for a series solution
∑
anx

n of the form

an+2 =
−1

2
an +

3

2
an+1 (21)

and can use this to determine y(x) explicitly.

(b) On general grounds (i.e. without y(x) explicitly given) where can you expect the series
of part (a) to converge? Explain. Does your explicit series match this expectation?

Problem 5. Series expansion of Modified Bessel Functions

Take the sinusoidal differential equation, which leads to sinusoidal solutions[
d2

dx2
+ ν2

]
y = 0 y = Ce±iνx (22)
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Changing x→ iz leads to a modified differential equation and solutions[
− d2

dz2
+ ν2

]
y = 0 y = Ce±νz (23)

Similarly Bessel functions satisfy the differential equation[
x
d

dx

(
x
d

dx

)
+ (x2 − ν2)

]
y = 0 (24)

leading to the oscillatory behavior analyzed previously Jν(x) and J−ν(x). Changing x→ iz
leads to the modified Bessel equation and the solutions are characterized by exponential
growth and decay [

z
d

dz

(
z
d

dz

)
− (z2 + ν2)

]
y = 0 (25)

where the exponentially growing solution is Iν(z) (the modified Bessel function of the first
kind), and the exponentially decaying solution Kν(z) (the modified Bessel function of the
second kind). We will develop a series expansion for I2(z) and K2(z)

(a) (do not turn in) Using Mathematica make a graph of the I0, I1, I2 and K0, K1, K2

for z = 0 . . .∞.

(b) As done in class, near z = 0 we approximate y(z) with a series of the following form

y(z) = y(0)(z) + y(1)(z) + y(2)(z) + . . . (26)

where each higher order is suppressed by a power of z (up to logs). Determine a
hierarchy of equations which determines y(n)(z) from the lower order solutions.

(c) Show that the general form of the zeroth order solution is

y(0)(z) = C1z
2 +

C2

z2
(27)

(d) Start with a C2 = 0, solve the hierarchy of part (b), and show that the solution can be
written with ν = 2

y1(x) = C1Iν (z) = C1(
1
2
z)ν

∞∑
k=0

(1
4
z2)k

k!Γ (ν + k + 1)
. (28)

(e) not graded – not part of redo. Now set C1 = 0, solve the hierarchy of part (b)
with C2 = 2 for later convenience. Here you should use the results of problem (1.c)
and show that a second solution takes the form

y2(x) =

[
− log(x)y1(x) +

2

x2
− 1

2
+

3x2

32
+

17x4

1152
+ . . .

]
(29)
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(f) not graded – not part of redo. Show that the asymptotic form of the (modified)
Bessel equation takes the form as x→∞ on the positive real axis

y(x) = β1u+(x) + β2u−(x) (30)

where u± = e±x
√
2πx

(g) not graded – not part of redo. Instead of working with y2(x) we may work with a
linear combination of y1 and y2

ȳ2(x) = αy1(x) + y2(x) (31)

as a linearly independent second solution. The constant α can be dialed to ensure
certain desirable behavior as x→∞. As y1(x) and y2(x) are evolved (e.g. numerically)
from x = 0 to x =∞ they can be written for large x

y1 →C1+u+ + C1−u− (32)

y2 →C2+u+ + C2−u− (33)

Then taking α = −C2+

C1+
we can determine a second solution ȳ2 which decreases expo-

nentially as x → ∞, instead of growing as x = ∞. The appropriate value of α turns
out to be

α = γE − log(2) (34)

where γE = 0.577216 is the Euler-Mascheroni constant, and stems from the taylor
series expansion of the Γ function

Γ(1 + x) = 1− γEx+
1

12

(
6γ2E + π2

)
x2 +O

(
x3
)

(35)

then

ȳ2(x) ≡ K2(x) = −(log(x/2) + γE)I2(x) +
2

x2
− 1

2
+

3x2

32
+ . . . (36)

Using Mathematica’s NDSolve solve the differential equation numerically. Start at
modestly small x (say x = 0.2) where the series expansion works well. Use the series
expansion to set the initial conditions for a given α. Then evolve the differential
equation to x = 8. Plot your numerical results for α = γE − log(2), and for values
that differ somewhat (both positive and negative) from this value. Note that γE =
EulerGamma in Mathematica
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