Problem 1. Curious Wave Functions

The eigenfunctions of a D7 brane in a curved geometry lead to the following eigenvalue equation of the Sturm Liouville type

$$
\begin{equation*}
-\partial_{\rho} \rho^{3} \partial_{\rho} \phi_{n}(\rho)=E_{n} w(\rho) \phi_{n}(\rho) \quad w(\rho)=\frac{\rho^{3}}{\left(\rho^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

where ρ is a radial variable which varies between 0 an ∞.
(a) Determine the general solution for $\phi(\rho)$ near $\rho=0$ for arbitary values E.
(b) Show that the regular solution at $\rho=0$ has the series expansion

$$
\begin{equation*}
y_{1}(\rho)=C_{1}\left[1-\frac{E}{8} x^{2}+\ldots\right] \tag{2}
\end{equation*}
$$

(c) Show that $\rho \rightarrow \infty$ is also a regular singular point and determine the asymptotic form of the general solution solution in this case.
(d) The eigenfunctions $\phi_{n}(\rho)$ are chosen to satisfy the boundary condtions of regularity at $\rho=0$ and normalizability at $\rho=\infty$ (i.e. the $\langle\phi, \phi\rangle$ with the inner product below should be finite). With these boundary condtions show that the operator

$$
\begin{equation*}
-\frac{1}{w(\rho)}\left[\partial_{\rho} \rho^{3} \partial_{\rho}\right] \tag{3}
\end{equation*}
$$

is self adjoint on the interval $\rho \in[0, \infty]$ witht the inner product

$$
\begin{equation*}
\langle f, g\rangle=\int_{0}^{\infty} w(\rho) \phi_{n}(\rho) \phi_{m}(\rho) \tag{4}
\end{equation*}
$$

(e) Show that two eigen-functions of different eigenvalues are orthogonal with respect to the inner product.
(f) We have two solutions: $y_{1}(E, \rho)=\left[1-\frac{E}{8} \rho^{2}+\ldots\right]$ and $y_{2}(E, \rho)=\frac{1}{\rho^{2}}+\ldots$ which is normalizable as $\rho \rightarrow \infty$. I have numerically integrated y_{1} from 0 to some mid point $\rho_{\text {mid }}$, and y_{2} from $\rho_{\max }=20$ to the mid point $\rho_{\text {mid }}$. For strong numerical stability is essential to integrate the solution away from the singular points. Download the mathematica notebook that does this, and use it answer the following questions:
(i) Make a graph of $\sqrt{w(\rho)} y_{1}(\rho) / y_{1}\left(\rho_{\text {mid }}\right)$ and $\sqrt{w(\rho)} y_{2}(\rho) / y_{2}\left(\rho_{\text {mid }}\right)$ for $E=3$. Plot[Evaluate[\{Sqrt[w[x]] y1[e, x]/y1[e, xmid],

Sqrt[w[x]] y2[e, x]/y2[e, xmid]\} /. e -> 3] , \{x, xmin, xmax\}, PlotRange -> \{\{0, 10\}, Full \}]
(ii) Plot $y_{1}(\rho)$ and its series approximation for $\rho=0 \ldots 1$.
(iii) Plot the wronskian of $y_{1}(\rho)$ and $y_{2}(\rho)$ at $\rho=\rho_{\text {mid }}$ as a function $E=5 \ldots 80$. Use it to determine the numerical value of the first three eigenvlaues. Explain your reasoning.
(iv) Plot the first three eigenfunctions (times the weight) the $\sqrt{w(\rho)} \phi_{n}$.

Problem 2. Damped harmonic oscillator

Take a damped harmonic oscillator on $t \in[a, \infty]$ with a driving force

$$
\begin{equation*}
\left[m \frac{d^{2}}{d t^{2}}+m \eta \frac{d}{d t}+m \omega_{o}^{2}\right] y(t)=f(t) \quad y(a)=y_{a} \quad y^{\prime}(a)=\partial_{t_{a}} y \tag{5}
\end{equation*}
$$

The associated linear operator is

$$
\begin{equation*}
\mathcal{L}_{t}=\left[m \frac{d^{2}}{d t^{2}}+m \eta \frac{d}{d t}+m \omega_{o}^{2}\right] \quad y(a)=0 \quad y^{\prime}(a)=0 \tag{6}
\end{equation*}
$$

and the retarded Green function satisfies with $t_{0} \in[a, \infty]$

$$
\begin{equation*}
\mathcal{L}_{t} G\left(t, t_{0}\right)=\delta\left(t-t_{0}\right) \tag{7}
\end{equation*}
$$

(a) Determine the adjoint of the differential equation. Be sure to specify the adjoint boundary conditions.
(b) Show that a formal to the differential equation is

$$
\begin{equation*}
y(t)=\left[\partial_{t_{a}} y G(t, a)-y_{a} \partial_{t_{a}} G(t, a)\right]+m \eta G_{R}(t, a) y_{a}+\int_{a}^{t} d t_{0} f\left(t_{0}\right) G\left(t, t_{0}\right) \tag{8}
\end{equation*}
$$

(c) Set the force to zero $f(t)$. Explicitly show that for $t \rightarrow t_{a}$ the solution satisfies the initial conditions, i.e.

$$
\begin{align*}
\lim _{t \rightarrow t_{a}} y(t) & =y_{a} \tag{9}\\
\lim _{t \rightarrow t_{a}} \partial_{t} y(t) & =\partial_{t_{a}} y \tag{10}
\end{align*}
$$

You will need to establish (by looking at the action of the adjoint) that

$$
\begin{equation*}
\lim _{t \rightarrow t_{o}}\left[m \partial_{t} \partial_{t_{0}} G_{R}\left(t, t_{0}\right)-m \eta \partial_{t} G_{R}\left(t, t_{0}\right)\right]=0 \tag{11}
\end{equation*}
$$

Problem 3. Particle in a sphere

(a) Consider a particle in a sphere of radius a

$$
\begin{equation*}
-\nabla^{2} \psi=E \psi \quad \psi(r, \theta, \phi)=\psi \tag{12}
\end{equation*}
$$

Separate variables in spherical coordinates

$$
\begin{equation*}
\Psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) \tag{13}
\end{equation*}
$$

and find the eignevalue equations in each of the three directions

$$
\begin{align*}
\frac{-1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} R(r)+\frac{\ell(\ell+1)}{r^{2}} R(r) & =k^{2} R^{2} \tag{14}\\
{\left[\frac{1}{\sin \theta} \frac{-\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} \Theta+\frac{m^{2}}{\sin \theta^{2}}\right] Y_{\ell m} } & =\ell(\ell+1) Y_{\ell m} \tag{15}\\
-\frac{\partial^{2} \Phi}{\partial \phi^{2}} & =m^{2} \Phi^{2} \tag{16}
\end{align*}
$$

(b) First examine the third operator in Eq. (16). Show that with periodic boundary conditions the operator is self adjoint.

The eigenfunctions of this equation are

$$
\begin{equation*}
\Phi_{m}(\phi)=e^{i m \phi} \quad m=0, \pm 1, \pm 2, \ldots \tag{17}
\end{equation*}
$$

(c) Now look at the next differential equation for $\Theta(\theta)$. After a change of variables

$$
\begin{equation*}
P(x) \equiv \Theta(\cos \theta) \quad x \equiv \cos \theta \tag{18}
\end{equation*}
$$

the equation becomes Legendre's differential equation

$$
\begin{equation*}
\left[-\frac{d}{d x}\left(1-x^{2}\right) \frac{d}{d x}+\frac{m^{2}}{1-x^{2}}\right] P_{\ell m}=\ell(\ell+1) P_{\ell m} \tag{19}
\end{equation*}
$$

Take $m=0$ for simplicity (azimuthally symmetric functions). The regular singular points of the differential equation are $x= \pm 1, \infty$. The form of the general solution near $x=1$ is (for ℓ general)

$$
\begin{equation*}
y(x)=C_{1}+C_{2} \log (1-x) \tag{20}
\end{equation*}
$$

(The form near $x=-1$ follows from the symmetry $x \rightarrow-x$).
Show that (for $m=0$) if one adopts demands a regular solution at $x= \pm 1$ then the Legendre differential operator with $x \in(-1,1)$

$$
\begin{equation*}
\mathcal{L} \equiv\left[-\frac{d}{d x}\left(1-x^{2}\right) \frac{d}{d x}\right] \quad y(\pm 1)=\text { regular } \tag{21}
\end{equation*}
$$

is self adjoint.
Physically by requiring regularity at $x= \pm 1$ we are requiring that the wave function fits on the surface of the sphere in much the same way we required that the particle's wave-function "fit" inside the box.
(d) The regular solution near $x=1$ is known as $P_{\ell}(x)$. Show that the regular solution near $x=1$ takes the form

$$
\begin{equation*}
P_{\ell}(x)=1+\frac{\ell(\ell+1)}{2}(x-1)+\ldots \tag{22}
\end{equation*}
$$

The symmetry of the equation under $x \rightarrow-x$ shows that there is another solution near $x=-1$ of the form

$$
\begin{equation*}
P_{\ell}(-x)=1-\frac{\ell(\ell+1)}{2}(1+x)+\ldots \tag{23}
\end{equation*}
$$

(e) We will adjust $\nu=\ell$ so that the wave functions $P_{\nu}(x)$ and $P_{\nu}(-x)$ join smoothly at $x=0$. Physically we are adjusting ν so that the particles wave function fits (gracefully) inside the sphere. From a numerical standpoint one starts with the form in Eq. (22), and integrates the differential equation from $x=1$ to $x=0$. One then starts with Eq. (23) and then integrates from $x=-1$ to $x=0$. For a specific value of $\nu(\nu$ non-negative integers it turns out) the two solutions $P_{\nu}(x)$ and $P_{\nu}(-x)$ will connect smoothly (i.e. their Wronskian will vanish as in problem one). Use mathematica and plot $P_{\nu}(x)$ and $P_{\nu}(-x)$. for $\nu=1.8,2.0,2.2$ for $x=-1 \ldots 1$,
(f) Now let us analyze this procedure analytically. For analytical work it is easier to start from $x=0$ where the function is regular and integrate the differential equation towards $x \rightarrow \pm 1$. For ℓ integers we expect to find a regular solution. $x=0$ is a regular point. Develop a series solution to Eq. (19) which is even in x

$$
\begin{equation*}
y_{\ell}(x)=\sum_{n} a_{n}(\ell) x^{n} \tag{24}
\end{equation*}
$$

with $a_{0}=1$ and $a_{1}=0$.
(i) Determine the coefficients $a_{n}(\ell)$. This is the series solution of the symmetric combination $P_{\ell}(x)+P_{\ell}(-x)$ for generic ℓ.
(ii) On general grounds what is the expected radius of convergence of this series? Explain. Using the explicit form of $a_{n}(\ell)$ determine the radius of convergence of the series for generic ℓ and show that it matches this expectation.
(iii) Argue that in order to avoid a divergent solution for $x \rightarrow 1$ we must have ℓ a non-negative even integer. Determine (up to normalization) the second Legendre polynomial $P_{2}(x)$ from your series solution.

Remark A similar excercise with odd functions $\left(P_{\ell}(x)-P_{\ell}(-x)\right)$ which have $a_{0}=0$ and $a_{1}=1$ (instead of even functions which had $a_{0}=1$ and $a_{1}=0$) leads to legendre polynomials $P_{\ell}(x)$ with ℓ non-negative odd integers.
(g) (Optional) Finally, look at the radial equation In this case the differential equation has a regular singular point at $r=0$ and an essential singularity at $r \rightarrow \infty$. Straightforward analysis near $r=0$ gives leading behaviour of the general solution

$$
\begin{equation*}
R(r)=C_{1} r^{\ell}+\frac{C_{2}}{r^{\ell}} \tag{25}
\end{equation*}
$$

The general solution is

$$
\begin{equation*}
R(r)=C_{1} j_{\ell}(k r)+C_{2} n_{\ell}(k r) \tag{26}
\end{equation*}
$$

where $j_{\ell}(x)=\sqrt{\frac{\pi}{2 x}} J_{\ell+\frac{1}{2}}(x)$ and $n_{\ell}(x)=\sqrt{\pi} 2 x Y_{\ell+\frac{1}{2}}(x)$ are spherical bessel functions. For our purposes we record the behavior at $r=0$

$$
\begin{align*}
j_{\ell}(k r) & =\frac{r^{\ell}}{(2 n+1)!!} \tag{27}\\
n_{\ell}(k r) & =-\frac{r^{-\ell}}{(2 n+1)!!} \tag{28}
\end{align*}
$$

and for $r \rightarrow \infty$

$$
\begin{align*}
j_{\ell}(k r) & =\frac{\sin \left(z-\frac{1}{2} \ell \pi\right)}{z} \tag{29}\\
n_{\ell}(k r) & =-\frac{\cos \left(z-\frac{1}{2} \ell \pi\right)}{z} \tag{30}
\end{align*}
$$

Explain why the eigen functions are

$$
\begin{equation*}
R_{n \ell}=C_{1} j_{\ell}\left(k_{n \ell} r\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{n \ell} a=x_{n \ell} \tag{32}
\end{equation*}
$$

are the zeros of $J_{\ell+\frac{1}{2}}(x)$.
(h) Determine the orthorgonality and completeness relations for the spherical bessel functions $j_{\ell}(k r)$. Explain your reasoning using the general theory of Sturm Liouville operators. You do not need to explicitly evaluate any definite integrals that are needed to normalize your eigenfunctions $j_{\ell}(k r)$.
Remark: As we know as $a \rightarrow \infty$ the eigenfunctions of the laplacian are

$$
\begin{equation*}
e^{i \boldsymbol{k} \cdot \mathbf{r}} \tag{33}
\end{equation*}
$$

The relationship between this eigenfunction and the eigenfunctions we have developed here is given by the important expansion

$$
\begin{equation*}
e^{i k r \cos \theta}=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta) \tag{34}
\end{equation*}
$$

