Problem 1. Curious Wave Functions

The eigenfunctions of a D7 brane in a curved geometry lead to the following eigenvalue equation of the Sturm Liouville type

$$-\partial_{\rho}\rho^{3}\partial_{\rho}\phi_{n}(\rho) = E_{n}w(\rho)\phi_{n}(\rho) \qquad w(\rho) = \frac{\rho^{3}}{(\rho^{2}+1)^{2}}$$
(1)

where ρ is a radial variable which varies between 0 an ∞ .

- (a) Determine the general solution for $\phi(\rho)$ near $\rho = 0$ for arbitrary values E.
- (b) Show that the regular solution at $\rho = 0$ has the series expansion

$$y_1(\rho) = C_1 \left[1 - \frac{E}{8} x^2 + \dots \right]$$
 (2)

- (c) Show that $\rho \to \infty$ is also a regular singular point and determine the asymptotic form of the general solution solution in this case.
- (d) The eigenfunctions $\phi_n(\rho)$ are chosen to satisfy the boundary conditions of regularity at $\rho = 0$ and normalizability at $\rho = \infty$ (i.e. the $\langle \phi, \phi \rangle$ with the inner product below should be finite). With these boundary conditions show that the operator

$$-\frac{1}{w(\rho)} \left[\partial_{\rho} \rho^{3} \partial_{\rho}\right] \tag{3}$$

is self adjoint on the interval $\rho \in [0, \infty]$ with the inner product

$$\langle f,g\rangle = \int_0^\infty w(\rho)\phi_n(\rho)\phi_m(\rho)$$
 (4)

- (e) Show that two eigen-functions of different eigenvalues are orthogonal with respect to the inner product.
- (f) We have two solutions: $y_1(E,\rho) = \left[1 \frac{E}{8}\rho^2 + \ldots\right]$ and $y_2(E,\rho) = \frac{1}{\rho^2} + \ldots$ which is normalizable as $\rho \to \infty$. I have numerically integrated y_1 from 0 to some mid point ρ_{mid} , and y_2 from $\rho_{\text{max}} = 20$ to the mid point ρ_{mid} . For strong numerical stability is essential to integrate the solution *away* from the singular points. Download the mathematica notebook that does this, and use it answer the following questions:
 - (i) Make a graph of √w(ρ)y₁(ρ)/y₁(ρ_{mid}) and √w(ρ)y₂(ρ)/y₂(ρ_{mid}) for E = 3.
 Plot[Evaluate[{Sqrt[w[x]] y1[e, x]/y1[e, xmid], Sqrt[w[x]] y2[e, x]/y2[e, xmid]} /. e -> 3], {x, xmin, xmax}, PlotRange -> {{0, 10}, Full }]
 - (ii) Plot $y_1(\rho)$ and its series approximation for $\rho = 0 \dots 1$.
 - (iii) Plot the wronskian of $y_1(\rho)$ and $y_2(\rho)$ at $\rho = \rho_{\text{mid}}$ as a function E = 5...80. Use it to determine the numerical value of the first three eigenvlaues. Explain your reasoning.
 - (iv) Plot the first three eigenfunctions (times the weight) the $\sqrt{w(\rho)\phi_n}$.

Problem 2. Damped harmonic oscillator

Take a damped harmonic oscillator on $t \in [a, \infty]$ with a driving force

$$\left[m\frac{d^2}{dt^2} + m\eta\frac{d}{dt} + m\omega_o^2\right]y(t) = f(t) \qquad y(a) = y_a \qquad y'(a) = \partial_{t_a}y \tag{5}$$

The associated linear operator is

$$\mathcal{L}_t = \left[m \frac{d^2}{dt^2} + m\eta \frac{d}{dt} + m\omega_o^2 \right] \qquad y(a) = 0 \qquad y'(a) = 0 \tag{6}$$

and the retarded Green function satisfies with $t_0 \in [a, \infty]$

$$\mathcal{L}_t G(t, t_0) = \delta(t - t_0) \tag{7}$$

- (a) Determine the adjoint of the differential equation. Be sure to specify the adjoint boundary conditions.
- (b) Show that a formal to the differential equation is

$$y(t) = [\partial_{t_a} y G(t, a) - y_a \partial_{t_a} G(t, a)] + m\eta G_R(t, a) y_a + \int_a^t dt_0 f(t_0) G(t, t_0)$$
(8)

(c) Set the force to zero f(t). Explicitly show that for $t \to t_a$ the solution satisfies the initial conditions, i.e.

$$\lim_{t \to t_a} y(t) = y_a \tag{9}$$

$$\lim_{t \to t_a} \partial_t y(t) = \partial_{t_a} y \tag{10}$$

You will need to establish (by looking at the action of the adjoint) that

$$\lim_{t \to t_o} \left[m \partial_t \partial_{t_0} G_R(t, t_0) - m \eta \partial_t G_R(t, t_0) \right] = 0$$
(11)

Problem 3. Particle in a sphere

(a) Consider a particle in a sphere of radius a

$$-\nabla^2 \psi = E\psi \qquad \psi(r,\theta,\phi) = \psi \tag{12}$$

Separate variables in spherical coordinates

$$\Psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi) \tag{13}$$

and find the eignevalue equations in each of the three directions

$$\frac{-1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}R(r) + \frac{\ell(\ell+1)}{r^2}R(r) = k^2R^2$$
(14)

$$\left[\frac{1}{\sin\theta}\frac{-\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta}\Theta + \frac{m^2}{\sin\theta^2}\right]Y_{\ell m} = \ell(\ell+1)Y_{\ell m}$$
(15)

$$-\frac{\partial^2 \Phi}{\partial \phi^2} = m^2 \Phi^2 \tag{16}$$

(b) First examine the third operator in Eq. (16). Show that with periodic boundary conditions the operator is self adjoint.

The eigenfunctions of this equation are

$$\Phi_m(\phi) = e^{im\phi} \qquad m = 0, \pm 1, \pm 2, \dots$$
(17)

(c) Now look at the next differential equation for $\Theta(\theta)$. After a change of variables

$$P(x) \equiv \Theta(\cos\theta) \qquad x \equiv \cos\theta \tag{18}$$

the equation becomes Legendre's differential equation

$$\left[-\frac{d}{dx}(1-x^2)\frac{d}{dx} + \frac{m^2}{1-x^2}\right]P_{\ell m} = \ell(\ell+1)P_{\ell m}$$
(19)

Take m = 0 for simplicity (azimuthally symmetric functions). The regular singular points of the differential equation are $x = \pm 1, \infty$. The form of the general solution near x = 1 is (for ℓ general)

$$y(x) = C_1 + C_2 \log(1 - x) \tag{20}$$

(The form near x = -1 follows from the symmetry $x \to -x$).

Show that (for m = 0) if one adopts demands a regular solution at $x = \pm 1$ then the Legendre differential operator with $x \in (-1, 1)$

$$\mathcal{L} \equiv \left[-\frac{d}{dx} (1 - x^2) \frac{d}{dx} \right] \qquad y(\pm 1) = \text{regular}$$
(21)

is self adjoint.

Physically by requiring regularity at $x = \pm 1$ we are requiring that the wave function fits on the surface of the sphere in much the same way we required that the particle's wave-function "fit" inside the box. (d) The regular solution near x = 1 is known as $P_{\ell}(x)$. Show that the regular solution near x = 1 takes the form

$$P_{\ell}(x) = 1 + \frac{\ell(\ell+1)}{2}(x-1) + \dots$$
(22)

The symmetry of the equation under $x \to -x$ shows that there is another solution near x = -1 of the form

$$P_{\ell}(-x) = 1 - \frac{\ell(\ell+1)}{2}(1+x) + \dots$$
(23)

- (e) We will adjust $\nu = \ell$ so that the wave functions $P_{\nu}(x)$ and $P_{\nu}(-x)$ join smoothly at x = 0. Physically we are adjusting ν so that the particles wave function fits (gracefully) inside the sphere. From a numerical standpoint one starts with the form in Eq. (22), and integrates the differential equation from x = 1 to x = 0. One then starts with Eq. (23) and then integrates from x = -1 to x = 0. For a specific value of ν (ν non-negative integers it turns out) the two solutions $P_{\nu}(x)$ and $P_{\nu}(-x)$ will connect smoothly (i.e. their Wronskian will vanish as in problem one). Use mathematica and plot $P_{\nu}(x)$ and $P_{\nu}(-x)$. for $\nu = 1.8, 2.0, 2.2$ for $x = -1 \dots 1$,
- (f) Now let us analyze this procedure analytically. For analytical work it is easier to start from x = 0 where the function is regular and integrate the differential equation towards $x \to \pm 1$. For ℓ integers we expect to find a regular solution.

x = 0 is a regular point. Develop a series solution to Eq. (19) which is even in x

$$y_{\ell}(x) = \sum_{n} a_n(\ell) x^n \tag{24}$$

with $a_0 = 1$ and $a_1 = 0$.

- (i) Determine the coefficients $a_n(\ell)$. This is the series solution of the symmetric combination $P_\ell(x) + P_\ell(-x)$ for generic ℓ .
- (ii) On general grounds what is the expected radius of convergence of this series? Explain. Using the explicit form of $a_n(\ell)$ determine the radius of convergence of the series for generic ℓ and show that it matches this expectation.
- (iii) Argue that in order to avoid a divergent solution for $x \to 1$ we must have ℓ a non-negative *even* integer. Determine (up to normalization) the second Legendre polynomial $P_2(x)$ from your series solution.

Remark A similar excercise with odd functions $(P_{\ell}(x) - P_{\ell}(-x))$ which have $a_0 = 0$ and $a_1 = 1$ (instead of even functions which had $a_0 = 1$ and $a_1 = 0$) leads to legendre polynomials $P_{\ell}(x)$ with ℓ non-negative *odd* integers.

(g) (Optional) Finally, look at the radial equation In this case the differential equation has a regular singular point at r = 0 and an essential singularity at $r \to \infty$. Straightforward analysis near r = 0 gives leading behaviour of the general solution

$$R(r) = C_1 r^{\ell} + \frac{C_2}{r^{\ell}}$$
(25)

The general solution is

$$R(r) = C_1 j_\ell(kr) + C_2 n_\ell(kr)$$
(26)

where $j_{\ell}(x) = \sqrt{\frac{\pi}{2x}} J_{\ell+\frac{1}{2}}(x)$ and $n_{\ell}(x) = \sqrt{\pi} 2x Y_{\ell+\frac{1}{2}}(x)$ are spherical bessel functions. For our purposes we record the behavior at r = 0

$$j_{\ell}(kr) = \frac{r^{\ell}}{(2n+1)!!}$$
(27)

$$n_{\ell}(kr) = -\frac{r^{-\epsilon}}{(2n+1)!!}$$
(28)

and for $r \to \infty$

$$j_{\ell}(kr) = \frac{\sin(z - \frac{1}{2}\ell\pi)}{z} \tag{29}$$

$$n_{\ell}(kr) = -\frac{\cos(z - \frac{1}{2}\ell\pi)}{z}$$
(30)

Explain why the eigen functions are

$$R_{n\ell} = C_1 j_\ell(k_{n\ell} r) \tag{31}$$

where

$$k_{n\ell}a = x_{n\ell} \tag{32}$$

are the zeros of $J_{\ell+\frac{1}{2}}(x)$.

(h) Determine the orthorgonality and completeness relations for the spherical bessel functions $j_{\ell}(kr)$. Explain your reasoning using the general theory of Sturm Liouville operators. You do not need to explicitly evaluate any definite integrals that are needed to normalize your eigenfunctions $j_{\ell}(kr)$.

Remark: As we know as $a \to \infty$ the eigenfunctions of the laplacian are

$$e^{i\mathbf{k}\cdot\mathbf{r}}$$
. (33)

The relationship between this eigenfunction and the eigenfunctions we have developed here is given by the important expansion

$$e^{ikr\cos\theta} = \sum_{\ell=0}^{\infty} (2\ell+1)i^{\ell} j_{\ell}(kr) P_{\ell}(\cos\theta)$$
(34)