Problem 1. Curious Wave Functions

The eigenfunctions of a D7 brane in a curved geometry lead to the following eigenvalue
equation of the Sturm Liouville type

— 0,00,60(p) = Enw(p)$nlp)  w(p) = —L— (1)

where p is a radial variable which varies between 0 an oo.

(a) Determine the general solution for ¢(p) near p = 0 for arbitary values E.

(b) Show that the regular solution at p = 0 has the series expansion

y1(p) = C} {1 — %z"’ + .. ] (2)

(c) Show that p — oo is also a regular singular point and determine the asymptotic form
of the general solution solution in this case.

(d) The eigenfunctions ¢, (p) are chosen to satisfy the boundary condtions of regularity
at p = 0 and normalizability at p = oo (i.e. the (¢, ) with the inner product below
should be finite). With these boundary condtions show that the operator

0,0°0,)] (3)

w
is self adjoint on the interval p € [0, oo] witht the inner product

<ﬂm:AwMM%@MMm (4)

(e) Show that two eigen-functions of different eigenvalues are orthogonal with respect to
the inner product.

(f) We have two solutions: y;(E,p) = [1 —£p*+...] and y(E,p) = ~ + ... which is
normalizable as p — oo. I have numerically integrated y; from 0 to some mid point
Pmid, and ys from ppa.c = 20 to the mid point pniq. For strong numerical stability
is essential to integrate the solution away from the singular points. Download the
mathematica notebook that does this, and use it answer the following questions:

(i) Make a graph of \/w(p)y1(p)/y1(pmia) and /w(p)y2(p)/y2(pmia) for E = 3.

Plot [Evaluate[{Sqrt [(wlx]] yile, xl/y1 [e, xmid],
Sqrtwlx]] y2[e, x]/y2[le, xmidl} /. e -> 3] , {x, xmin, xmax},
PlotRange -> {{0, 10}, Full }]

(ii) Plot yi(p) and its series approximation for p =0...1.

(iii) Plot the wronskian of y;(p) and y2(p) at p = pmia as a function £ =5...80. Use
it to determine the numerical value of the first three eigenvlaues. Explain your
reasoning.

(iv) Plot the first three eigenfunctions (times the weight) the /w(p)o, .
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Problem 2. Damped harmonic oscillator

Take a damped harmonic oscillator on t € [a, co] with a driving force

d? d
st me| v = £ v =n () =0y )
The associated linear operator is
L= m bmn g bmez|  y@ =0 Y@ =0 ©)
¢ = Mg o+ ma y(a) = y'(a) =
and the retarded Green function satisfies with tq € [a, o]

LG (t,to) = 0(t — to) (7)

(a) Determine the adjoint of the differential equation. Be sure to specify the adjoint
boundary conditions.

(b) Show that a formal to the differential equation is
t
y(t) = 0Ly G(t, a) = Yo 0, G(t, a)] + mnGr(t, a)ya. + / dto f (to)G(t, to) — (8)

(c) Set the force to zero f(t). Explicitly show that for ¢ — ¢, the solution satisfies the
initial conditions, i.e.

Tim y(t) =ya (9)
th_{{(ll Oy(t) =0,y (10)

You will need to establish (by looking at the action of the adjoint) that

thi? [m@tatoGR(t, tg) — mn(’?tGR(t, t[))] =0 (11)



Problem 3. Particle in a sphere

(a)

Consider a particle in a sphere of radius a

Separate variables in spherical coordinates
U(r,0,¢) = R(r)0(0)2(¢) (13)
and find the eignevalue equations in each of the three directions
-10 ,0 0(0+1) L 2p2
FET ER(T) + 2 R(T) =k°R (14)
1 -0 0 m?
500 50 s1n986@ t e Yom =00 4+ 1)Yo, (15)
0?P
_67452 :m2CI>2 (].6)

First examine the third operator in Eq. (16). Show that with periodic boundary
conditions the operator is self adjoint.

The eigenfunctions of this equation are

D, (¢) =e™  m=0,+1,£2,... (17)

Now look at the next differential equation for ©(6). After a change of variables

P(z) = O(cosh) x = cosf (18)
the equation becomes Legendre’s differential equation
d d m?
——1=2*)—+ —— | P =Ll + 1) P, 19
da:( x)dx+1—:1:2 ¢ (E+1)F (19)

Take m = 0 for simplicity (azimuthally symmetric functions). The regular singular
points of the differential equation are x = £1,00. The form of the general solution
near x = 1 is (for ¢ general)

y() = Cy + Cylog(1 — ) (20)

(The form near x = —1 follows from the symmetry © — —x).

Show that (for m = 0) if one adopts demands a regular solution at x = £1 then the
Legendre differential operator with z € (—1,1)

L= [—iu — xQ)i} y(£1) = regular (21)

is self adjoint.

Physically by requiring regularity at * = £1 we are requiring that the wave function
fits on the surface of the sphere in much the same way we required that the particle’s
wave-function ”fit” inside the box.



(d)

The regular solution near z = 1 is known as P(z). Show that the regular solution

near x = 1 takes the form

((+1)
2

The symmetry of the equation under x — —x shows that there is another solution
near x = —1 of the form

Py(z) =1+ (x—1)+... (22)

00+ 1)

Pg(—]?) =1- 9

(I+z)+... (23)
We will adjust ¥ = ¢ so that the wave functions P,(z) and P,(—x) join smoothly at
x = 0. Physically we are adjusting v so that the particles wave function fits (gracefully)
inside the sphere. From a numerical standpoint one starts with the form in Eq. (22),
and integrates the differential equation from z = 1 to x = 0. One then starts with
Eq. (23) and then integrates from x = —1 to x = 0. For a specific value of v (v
non-negative integers it turns out) the two solutions P,(x) and P,(—x) will connect

smoothly (i.e. their Wronskian will vanish as in problem one). Use mathematica and
plot P,(z) and P,(—x). for v = 1.8,2.0,2.2 for x = —1...1,

Now let us analyze this procedure analytically. For analytical work it is easier to start
from z = 0 where the function is regular and integrate the differential equation towards
x — £1. For ¢ integers we expect to find a regular solution.

x = 0 is a regular point. Develop a series solution to Eq. (19) which is even in «
y(a) =) an(0)a” (24)

with ap = 1 and a; = 0.

(i) Determine the coefficients a,(¢). This is the series solution of the symmetric
combination Py(x) + Py(—x) for generic /.

(ii) On general grounds what is the expected radius of convergence of this series?
Explain. Using the explicit form of a,(¢) determine the radius of convergence of
the series for generic ¢ and show that it matches this expectation.

(iii) Argue that in order to avoid a divergent solution for z — 1 we must have ¢ a
non-negative even integer. Determine (up to normalization) the second Legendre
polynomial P(z) from your series solution.

Remark A similar excercise with odd functions (Py(x) — Py(—x)) which have ag = 0
and a; = 1 (instead of even functions which had ag = 1 and a; = 0) leads to legendre
polynomials Py(x) with ¢ non-negative odd integers.

(Optional) Finally, look at the radial equation In this case the differential equation has
a regular singular point at » = 0 and an essential singularity at r — oo. Straightforward
analysis near r = 0 gives leading behaviour of the general solution
&

R(r) = Cﬂ“é + 7 (25)
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The general solution is

R(r) = Cyje(kr) + Cong(kr) (26)
where jy(z) = \/EJ“_%(.Z') and ny(z) = \/EZxYH%(x) are spherical bessel functions.
For our purposes we record the behavior at » = 0

ré

Je(kr) s (27)
by — - 28
ne( 7”) =- m ( )
and for r — oo
, sin(z — Lé7)
Je(kr) :+ (29)
1
— =/
n(kr) = — M (30)
Explain why the eigen functions are
Rye = Cijo(kner) (31)
where
]{ana = Tne (32)

are the zeros of JH%(x).

Determine the orthorgonality and completeness relations for the spherical bessel func-
tions jy(kr). Explain your reasoning using the general theory of Sturm Liouville oper-
ators. You do not need to explicitly evaluate any definite integrals that are needed to
normalize your eigenfunctions j,(kr).

Remark: As we know as a — oo the eigenfunctions of the laplacian are
etk (33)
The relationship between this eigenfunction and the eigenfunctions we have developed

here is given by the important expansion

[e.e]

gikreost Z(% + 1)i*jo(kr) Py(cos 0) (34)

=0



