






















We recall Chat the action of a group in a function is given
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In this case the representation for the inverse of a

rotation in the coordinate space is given by
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Since the inner product is invariant under representations
of the group

we have
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By looking at the slides
,

we see that
any function can

be decomposed in a basis determined by the different
representations and the rows of each representation .

In this

sense
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we can think of the fin
'

as the projection of
said function f in this basis
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Since in this group we know that the inner product is

invariant under the group operations we can see that
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Where we used the commutation of H with
g

in the last

inequality .
Now

, using the results from b) we see that
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