A few of FT examples
$\xrightarrow[\text { The constants are chosen so that } \int d x f(x)=1=\left.\hat{f}(k)\right|_{k=0}]{\rightleftarrows} \hat{f(x)} \underset{ }{\rightleftarrows}$
$0 \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} / 2 \sigma^{2}} \longleftarrow e^{-\frac{1}{2} \sigma^{2} k^{2}}$

$$
\frac{1}{2 \sigma} e^{-|x| / \sigma} \longleftrightarrow \frac{1}{(k \sigma)^{2}+1}
$$

$$
\int d x f(x)=1
$$

Step fan of integral $1 \longleftrightarrow \frac{\sin (k \sigma)}{k \sigma}$

Generally

$$
\frac{1}{|\sigma|} f(x / \sigma) \quad \longleftrightarrow \hat{f}(k \sigma)
$$

behavior
Pr: under scaling

$$
F T \text { of } \frac{1}{|\sigma|} f(x / \sigma)=\int_{-\infty}^{\infty} d x e^{-i k x} \frac{1}{|\sigma|} f(x / \sigma)=\int d u e^{-i k \sigma u} f(u)
$$

Charge variables:
Don't loose

$$
u=x / \sigma \quad e^{i k x}=e^{i k \sigma u} \quad d u=\frac{d x}{|\sigma|}
$$ absolute value

Then

$$
\text { FT of } \frac{1}{|\sigma|} f(x / \sigma)=\hat{f}(k \sigma)
$$

Picture:

coordinate

k - space
space
i.e. narrower in x-space \longleftrightarrow wider k-space

Fourier Transform of Convolutions
Consider two functions $f(x)$ and $g(x)$ and corresponding fourier transforms $\hat{f}(k)$ and $g(k)$. The convolution of f and g is

$$
(f \circ g)(x) \equiv \int d x^{\prime} f\left(x-x^{\prime}\right) g\left(x^{\prime}\right)
$$

Its fourier transform is just the product

$$
(F T \text { of } F \circ g)(k)=\hat{f}(k) \hat{g}(k)
$$

of fourier transforms

Prf

Use a shorthand notion

$$
\begin{aligned}
& \int_{x} \equiv \int_{-\infty}^{\infty} d x \quad \int_{k}=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \\
& \delta_{x y} \equiv \delta(x-y) \quad \delta_{k_{1} k_{2}}=\delta\left(k_{1}-k_{2}\right)
\end{aligned}
$$

Thus for example:

$$
\int_{k} \int_{x} e^{i k x}=\int_{k} 2 \pi \delta(k)=1
$$

ie.

$$
\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \int_{-\infty}^{\infty} d x e^{i k x}=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} 2 \pi \delta(k)=1
$$

Then Proof of Theorem

$$
F T(k) \equiv \int_{x} e^{-i k x} \int_{x_{1}} f\left(x-x_{1}\right) g\left(x_{1}\right)
$$

Use

$$
\begin{aligned}
& \int_{k_{1}} e^{i k_{1}\left(x-x_{1}\right)} \hat{f}\left(k_{1}\right)=f\left(x-x_{1}\right) \\
& \int_{k_{2}} e^{i k_{2} x_{1}} \hat{g}\left(k_{2}\right)=g\left(x_{1}\right)
\end{aligned}
$$

So

$$
F T(k)=\int_{k_{1} k_{2}} \int_{x x_{1}} \hat{f}\left(k_{1}\right) \hat{g}\left(k_{2}\right) e_{x \text { is integrated over and this gives } 2 \pi \delta\left(k-k_{1}\right)}^{-i k x} \underbrace{e^{i k_{1}\left(x-x_{1}\right)} e^{i k_{2} x_{1}}}
$$

Integrating over x and x_{1} gives

$$
\begin{aligned}
& F T(k)=\int_{k_{1} k_{2}} f\left(k_{1}\right) g\left(k_{2}\right) 2 \pi \delta_{k k_{1}} 2 \pi \delta_{k_{1} k_{2}} \\
& F T(k)=f(k) g(k)
\end{aligned}
$$

Parseval's Theorem Again
From the convolution theorem, it may be shown

$$
\int \frac{d k}{2 \pi} \hat{f}(k) \hat{g}(k)=\int d x f^{*}(x) g(x)=\langle f, g\rangle
$$

This may be shown using the properties under complex conjugation of the Fourier transform y see handout.

- This says that the inner-product may be taken in. coordinate or k-space.

Definition. Here $f(x)$ is a function and $\hat{f}(k)=\int_{x} e^{-i k x} f(x)$ is its Fourier transform

$$
\begin{equation*}
f(x) \Leftrightarrow \hat{f}(k) \tag{1}
\end{equation*}
$$

Complex and Symmetry Properties. Here even and odd functions satisfy $f(-x)= \pm f(x)$:

$$
\begin{align*}
f(-x) & \Leftrightarrow \hat{f}(-k) \tag{2}\\
(f(x))^{*} & \Leftrightarrow(\hat{f}(-k))^{*} \tag{3}\\
\text { if } f(x) \text { is real } & \Leftrightarrow \hat{f}(-k)=(\hat{f}(k))^{*} \tag{4}\\
\text { if } f(x) \text { is even } & \Leftrightarrow \hat{f}(k) \text { is even } \tag{5}\\
\text { if } f(x) \text { is odd } & \Leftrightarrow \hat{f}(k) \text { is odd } \tag{6}\\
\text { if } f(x) \text { is real and even } & \Leftrightarrow \hat{f}(k) \text { is real and even } \tag{7}\\
\text { if } f(x) \text { is real and odd } & \Leftrightarrow \hat{f}(k) \text { is imaginary and odd } \tag{8}
\end{align*}
$$

Shift properties:

$$
\begin{align*}
e^{i k_{o} x} f(x) & \Leftrightarrow \hat{f}\left(k-k_{o}\right) \tag{9}\\
f\left(x-x_{o}\right) & \Leftrightarrow e^{-i k x_{o}} \hat{f}(k) \tag{10}
\end{align*}
$$

Proof of Eg (3)

$$
\begin{aligned}
f(x) & =\int_{k} e^{i k x} \hat{f}(k) \\
f^{*}(x) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{-i k x} \hat{f}^{*}(k)
\end{aligned}
$$

Change variables $\quad \bar{k}=-k$

$$
f^{*}(r x)=\int_{-\infty}^{\infty} \frac{d \bar{k}}{2 \pi} e^{i \bar{k} x \hat{f}^{*}(-\bar{k})}
$$

Thus

$$
f^{*}(x) \Longleftrightarrow \hat{f}^{*}(-k)
$$

Proot of Eg (9)

$$
\begin{aligned}
F T \text { of e } \begin{aligned}
i k_{0} x
\end{aligned}(x) & =\int d x e^{-i k x} e^{i k_{0} x} f(x) \\
& =\int d x e^{-i\left(k-k_{0}\right) x} f(x) \\
& =\hat{f}\left(k-k_{0}\right)
\end{aligned}
$$

Example 1 I am defining a "Gaussian function" $G(x)=\exp \left(-x^{\wedge}\right) /$ Sari $[2$ Pi] here

A wave packet:
Non

$$
\begin{gathered}
\equiv \frac{1}{\sigma} G(x / \sigma) \\
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} / 2 \sigma^{2}} \cos \left(k_{0} x\right) \\
\lambda_{0}=2 \pi / k_{0} \ll \sigma \text { and } k_{0} \gg \frac{1}{\sigma}
\end{gathered}
$$

A Realize that since $f(x)$ is real and even $\hat{f}(k)$ is real and even

- Write $\cos \left(k_{0}\right)=e^{i k_{0} x}+e^{-i k_{0} x}$
The exp (ik0 $x)$ factors will shift the function.
- Recognize that the FT of a gaussian is another Gaussian. But since the wave packet is broad in coordinate space it is narrow in k-space

$$
(F T \text { of } f(x))(k)=F T \text { of } \frac{1 G(x)}{2 \sigma} e^{i k_{0} x}+\frac{1}{2 \sigma} \frac{G(x / \sigma)}{\sigma} e^{-i k_{0} x}
$$

More explicitly the first term is $\frac{1}{2} e^{-\frac{1}{2}\left(k-k_{0}\right)^{2} \sigma^{2}}$

Picture

$$
=\frac{1}{2} G((k-k) \sigma)+\frac{1}{2} G\left(\left(k+k_{0}\right) \sigma\right)
$$

Example 2
Dirac Comb:

$$
D C(x)=\sum_{m=-\infty}^{\infty} \delta(x-m L)
$$

Recall that

$$
D C(x)=\frac{1}{L} \sum_{n} e^{i \frac{2 \pi}{L} n x}
$$

Then

$$
\begin{aligned}
D C(k) & =\int_{x} e^{-i k x} D C(x) \\
& =\frac{1}{L} \sum_{n} 2 \pi \delta\left(k-\frac{2 \pi n}{L}\right)
\end{aligned}
$$

Note this is another k-space Dirac Comb:
Remember the fourier transform of a Dirac comb of spacing L is another dirac comb of spacing 2 PilL

Recall that

$$
\int \frac{d k}{2 \pi} \hat{f}^{*}(k) \hat{g}(k)=\int d x f(x) g(x)
$$

Apply this with $f(x)=D C(x) \quad \hat{f}^{*}(k)=D C(k)$

$$
\begin{aligned}
\int \frac{d k}{2 \pi} D C(k) \hat{g}(k) & =\int d x D C(x) g(x) \\
\frac{1}{L} \sum_{n} \hat{g}\left(\frac{2 \pi_{n}}{L}\right) & =\sum_{m} g(m L)
\end{aligned}
$$

This is known as the Poisson summation formula

If a sum is slowly convergent in coordinate space, it may be easier to perform the sum in k-space. This is known as Ewald summation

