
Physics 501: Classical Mechanics
Final Exam

Stony Brook University

Fall 2018

General Instructions:

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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1 A kicked oscillator

Consider three particles of masses m,M,m, constrained to move along the x-axis. The par-
ticles are connected by ideal unstretched springs with spring constant κ as shown below (see
the last page).

Neglect friction. The unstretched distance between the particles is a.

(a) Determine the normal modes of the system, and make a sketch of them. Identify any
zero modes.

(b) At time t = 0, the central particle (with mass M) is given an impulsive kick F0 = P0δ(t)
to the right. Determine the the position of each particle as a function of time for t > 0.

Assume that the impulse is small enough that subsequent oscillations can be treated
in a harmonic approximation.

Solution:

(a) We first write down the Lagrangian

L =
1

2
mẋ21 +

1

2
mẋ22 +

1

2
MẊ2 − 1

2
κ(x1 − x2)2 −

1

2
κ(x2 −X)2 (1)

The equation of motion is

mẍ1 =− κ(x1 − x2) (2)

MẌ =κ(x1 −X)− κ(x2 −X) (3)

mẍ2 = + κ(x2 −X) (4)
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which in matrix form readsm 0 0
0 M 0
0 0 m

ẍ1Ẍ
ẍ2

 = κ

−1 1 0
1 −2 1
0 1 −1

x1X
x2

 (5)

The most direct way is to find the normal modes is substitute a formx1X
x2

 = e−iωt

α1

α2

α3

 (6)

leading to κ−mω2 −κ 0
−κ 2κ−Mω2 −κ
0 −κ κ−mω2

α1

α2

α3

 = 0 . (7)

Then these linear equations will have non-trivial solutions when the determinant vanishes

det

κ−mω2 −κ 0
−κ 2κ−Mω2 −κ
0 −κ κ−mω2

 = 0 (8)

Leading to
− ω2(κ−mω2)(κ(2m+M)−mMω2) = 0 (9)

So
ω = 0 ω2 =

κ

m
ω2 =

κ

m
(2m/M + 1) (10)

Here we will follow a slightly less systematic approach based on symmetry. First of all
there is an obvious zero mode corresponding to a shift of all particles by a finite amount.
The potential energy (which depends only on differences) is obviously unchanged by this
shift. The zero mode is

~Ez =

1
1
1

 ω2 = 0 (11)

Thus a specific solution to the EOM for belonging only zero mode isx1X
x2

 = (Azt+Bz)

1
1
1

 (12)

Then we can guess the next two modes based on the symmetry of the problem. The
modes should be even (see figure below) and odd (see figure below) under the reflection
symmetry of the problem. The even mode is

~Ee =

−1
0
1

 (13)
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and is clearly orthogonal to the zero mode. This means, more physically, that this oscillation
does not displace the center of mass. The odd mode takes the form

~Eo =

1
α
1

 (14)

We require that it be orthogonal to the zero mode,

~ET
o · M · ~Ez = m+Mα +m = 0 , (15)

or equivalently we the odd mode should not displace the center of mass. Thus

α = −2m

M
(16)

Now we can substitute these two modes into the the equation of motion and determine
the frequencies. First we study the even mode, substituting this form into the equations of
motion, taking x1X

x2

 = Aee
−iωet

−1
0
1

 , (17)

we find

−mω2
e

−1
0
1

 = κ

−1
0
1

 (18)

which satisfies the provided

ω2
e =

κ

m
(19)

Similarly we substitute x1X
x2

 = Aoe
−iωet

 1
−2m/M

1

 , (20)

into the EOM (Eq. (5)), leading to

mω2
o

 1
−2
1

 = k(1 + 2m/M)

 1
−2
1

 (21)

Thus the EOM are satisfied provided

ω2
o =

k

m
(1 + 2m/M) (22)
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Figure 1: (a) A sketch of the normal modes. (b) The initial conditions after the impulse
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(b) Here we need to analyze the motion just after the impulse. Just after the impulse,
on the middle particle has any net velocity. Indeed the velocity of the middle particle just
after the impulse is simply P0/M and the velocity of the center of mass is P0/(M + 2m),
and the positions of the particles are unchanged (see figur!). Thus the initial conditions for
our mechanics problem arex1X

x2

 =

0
0
0

 v1
vX
v2

 =

 0
P0/M

0

 (23)

The general solution isx1X
x2

 = (Azt+Bz) ~Ez + Ae cos(ωet+ ϕe) ~Ee + Ao cos(ωot+ ϕo) ~Eo (24)

In general we should adjust the integration constants to match the initial conditions. Straight-
forward algebra can determine these constants.

To carry out this algebra it helps to have intuition. First, since no particle is displaced
at t = 0+ the solution must take the formx1X

x2

 = Azt ~Ez + Ae sin(ωet) ~Ee + Ao sin(ωot) ~Eo (25)

This already simplifies the algebra. It is simple enough to stop thinking here and to solve
for Az, Ae, Ao in a pedestrian fashion.

But to clarify the physics we note that after the impulse, the center of mass moves with
velocity vcm = P0/(M + 2m). This center of mass motion determines the zero mode, fixing
Az = vcm, and Bz = 0. Just after the impulse the mass M is moving with speed v0 = P0/M .
In the center of mass frame (see figure) the particles are moving (just after the impulse) with
velocity  −vcm

v0 − vcm
−vcm

 (26)

which clearly belongs to the odd mode. We may therefore the set the amplitude of the even
mode to zero. Then finally we may fix the amplitude of the odd from our initial conditions
in the center of mass frame: −vcm

v0 − vcm
−vcm

 =
d

dt
(A0 sin(ωot))

∣∣∣∣
t=0+

 1
−2m
M

1

 . (27)

So we require −Aoωo = vcm leading to our final resultx1X
x2

 =
P0t

M + 2m

1
1
1

− P0

(M + 2m)ω0

sin(ωot)

 1
−2m/M

1

 . (28)
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2 Hamiltonian basics

(a) Consider an infinitesimal canonical transformation generated by G(q, p) for a Hamil-
tonian system with one generalized coordiante q. Show that if the transformation is a
symmetry of a time independent Hamiltonian then G(q, p) is constant in time.

(b) Consider a Hamiltonian system with Hamiltonian H(q, p) and one generalzied coordi-
nate q. Show that the volume of phase space is preserved under the time evolution of
the system.

Solution:

(a) The transformation is

q → q′ =q + λ
∂G

∂p
, (29)

p→ p′ =p− λ∂G
∂q

. (30)

If this is a symmetry then the Hamiltonian is unchanged by the change of variables

H(q′, p′) = H(q, p) . (31)

Substituting q′ and p′, and expanding to first order in λ

H(q′, p′) =H(q + λ
∂G

∂p
, p− λ∂G

∂q
) (32)

=H(q, p) + λ

(
∂H

∂q

∂G

∂p
− ∂H

∂p

∂G

∂q

)
︸ ︷︷ ︸

≡{H,G}

(33)

Thus we find
{H,G} = 0 . (34)

Since the equation of motion of G is

Ġ = −{H,G} , (35)

we find Ġ = 0, i.e. G is constant in time.

(b) We should look at how the measure

dq′ dp′ (36)

transforms under time evolution. Under a small time step δt q, p are mapped to q′, p′ by the
Hamiltonian evolution

q → q′ =q +
∂H

∂p
δt , (37)

p→ p′ =p− ∂H

∂q
δt . (38)
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So under the transformation the dq′dp′ is related to dqdp by the Jacobian determinant:

dq′dp′ =
∂(q′, p′)

∂(q, p)
dqdp ≡

∣∣∣∣∣∂q
′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

∣∣∣∣∣ dq dp (39)

We may compute this determinant to first order in δt

dq′dp′ =

∣∣∣∣∣1 + ∂2H
∂q∂p

δt ∂2H
∂q∂p

δt

− ∂H
∂q∂p

δt 1− ∂H
∂p∂q

δt

∣∣∣∣∣ dq dp (40)

=

(
1 +

(
∂2H

∂q∂p
− ∂2H

∂q∂p

)
δt

)
dqdp+O(δt2) (41)

=dp dp (42)

which shows that the volume is conserved as the system evolves.
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3 A damped anharmonic oscillator

Consider a damped anharmonic oscillator

m
d2x

dt
+mη

dx

dt
+mω2

0x+ λx3 = 0 (43)

(a) At time t = 0 the oscillator is initialized with initial amplitude, x(0) = A, and no
initial velocity. (i) Introduce an appropriate set of dimensionless variables to rewrite
Eq. (43) in dimensionless form. (ii) For what range of the dimensionful parameters
of this problem can the motion of the oscillator be consider approximately harmonic,
with small damping and small anharmonic terms?

(b) Determine a zeroth order solution to Eq. (43), which is approximately valid for all
times t > 0 for small damping and small anharmonic terms.

The identity (cos(x))3 = 1
4

cos(3x) + 3
4

cos(x) may be useful.
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Solution:

(a) We first set ω0 = A = 1. Then

x̂ =
x

A
t̂ = ω0t (44)

The equation then reads

mω2
0A
d2x̂

dt̂2
+ (mω2

0A)
η

ω0

dx̂

dt̂
+mω2

0Ax̂+ λA3x̂3 = 0 (45)

After dividing by mω2
0A we find

d2x̂

dt̂2
+

η

ω0

dx̂

dt̂
+ x̂+

λA2

mω2
0

x̂3 = 0 (46)

So we require that
η

ω0

� 1 (47)

and
λA2

mω2
0

� 1 (48)

Finally we define

η̂ =
η

ω0

λ̂ ≡ λA2

mω2
0

(49)

and we will drop the “hats” below in all expressions.

(b) We substitute a trial solution and define the phase Ω

x(t) = C(t) cos(−t+ ϕ(t)) Ω ≡ −t+ ϕ (50)

The spirit here is that in the absence of the damping and anharmonic terms the general
solution is

x(t) = C cos(−t+ ϕ) . (51)

In secular perturbation theory the integration constants C,ϕ are promoted to slow func-
tions of time. This approximation scheme goes by various names such as the “slow-roll”
approximation, or the “rotating waver approximation”.

Computing the derivative

dx

dt
=− C sin(−t+ ϕ)(−t+ ϕ̇) + Ċ cos Ω (52)

=C sin(Ω)− C sin(Ω)ϕ̇+ Ċ cos Ω (53)

Differentiating again

d2x

dt2
=C cos(Ω)(−1 + ϕ̇) + Ċ sin Ω + C cos(Ω)ϕ̇+ Ċ sin Ω + small (54)

=− C cos Ω + 2Ċ sin Ω + 2C cos Ωϕ̇ (55)
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In this step we have neglected terms of order C̈ and ϕ̈. This is the spirit of the “slow-roll”
approximation where the integation “constants” depend slowly on time.

Thus
ẍ+ x = 2Ċ sin Ω + 2C cos Ωϕ̇ (56)

The anharmonic term apprixmates to

λx3 =
3

4
cos(Ω) +

1

4
cos(3Ω) (57)

'3

4
cos(Ω) (58)

while the dissipative term is

η
dx

dt
= ηC sin(Ω) (59)

In these terms which are small because of the small parametes, λ and η, we may neglect Ċ
and ϕ̇. The 3Ω terms contributes to the first correction, but do not contribute to the leading
order solution (see lecture). It will be neglected below.

Collecting the partial results for the second derivate, Eq. (56), the anharmonic equation,
Eq. (58), and the dissipative equation, Eq. (59), the equation of motion then reads(

2Ċ + ηC
)

sin Ω +

(
2Cϕ̇+

3

4
λC3

)
= 0 (60)

Integrating the first equation
C(t) = C(0)e−(η/2)t (61)

At early times our solution must behave as cos(−kt), where k is a constant to be deter-
mined. This is a consequence of our initial conditions, where the initial amplitude is unity
and the initial velocity is zero. We thus set C(0) to unity.

Then we integrate the phase

ϕ̇ =
3λ

8
C2 =

3

8
λe−ηt , (62)

Integrating the phase we find

ϕ =
3λ

8η
(1− e−ηt) , (63)

In integrating the phase we have specified that at small times the phase is ϕ ∝ t as required
by our initial conditions that the initial velocity be zero. Summarizing then we find

x(t) = e−(η/2)t cos

[
−t+

3λ

8η
(1− e−ηt)

]
. (64)
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4 Oscillations on a string

Consider a long string of mass density µ and tension T running along the x-axis. Attached to
the center of the string is a mass, m, as shown below (see the last page). The mass is pushed
and pulled by an an external harmonic force, F (t) = F0 cos(ωt) = Re[F0e

−iωt], direction.

The amplitude of the strings motion y(t, x) is small enough to be treated in a harmonic
approximation.

(a) Determine the steady state solution, y(t, x), for the amplitude of the string to the right
and left of the mass.

(b) Compute the time averaged work done per time by the external force.

Solution:

(a) The first part we recognize that the solution to right and the left must take the
forms

yL =Ae−ikx−iωt (65)

yR =Beikx−iωt (66)

Specifically the left solution consists only of left-movers, while the right solution consists
only of right movers. Continuity demands that we set A = B. Drawing a free body digram
of the mass (see below) which moves as ym(t) we determine a final constraint:

m
d2ym
dt2

=F (t) + T
dyR
dx
− T dyL

dx
(67)

The mass moves up and down harmonically. Continuity says

ym(t) = Ae−iωt (68)

Substituting the above forms into we find

−mω2A = F0 + TikA− T (−ikA) (69)
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Figure 2: A free body diagram for the motion of the mass m.

So since Tik = iZω with Z =
√
Tµ the wave impedance we find

A =
F0

−mω2 + 2iZω
(70)

This completes the solution

y(t, x) =

{
F0

−mω2+2iZω
e−ikx−iωt x < 0

F0

−mω2+2iZω
eikx−iωt x > 0

(71)

Taking the real part this can be written

y(t, x) =
F0√

(mω)2 + (2Zω)2
cos(k|x| − vt+ φ0) φ0 = tan−1(2Zω/mω2) (72)

(b) The work done is
dW

dt
= ẏmF (t) (73)

Since these quantities vary harmonically as

ym = Ae−iωt ẏm = −iωAe−iωt F (t) = F0e
−iωt (74)

we can compute the average
dW

dt
=

1

2
Re[(−iωA)F ∗0 ] (75)

Substituting the amplitude from Eq. (70) into this last expression we find

dW

dt
=

1

2
Re

[
−iωF0

−mω2 + 2iZω
F ∗0

]
=

|F0|2ω2Z

(mω2)2 + (2Zω)2
(76)
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