Brief Review in 10

The Hamiltonian evolultion can be thought of a map in phase space


$$
(q, p) \rightarrow(Q, p)
$$

- The map preserves the volume of phase space

Passive view: This is just a new set of coordinates for the phase space

$$
Q(q, p) \quad p(q, p)
$$

Active view: The system evolves in the phase space:

$$
\begin{array}{ll}
q \rightarrow Q=q+\dot{Q}(q, p) t & \dot{Q}=d Q / d t \\
p \rightarrow P=p+\dot{P}(q, p) t & \dot{P}=d P / d t
\end{array}
$$

- This evolution preserves the phase-space volutne

$$
\frac{d \Delta Q \Delta P)}{d t}=\left(\frac{\partial \dot{Q}}{\partial q}+\frac{\partial \dot{p}}{\partial p}\right) \Delta p \Delta q
$$

Canonical Transformation Review
"canonical"
A. Then we asked are there other transformations which leave the form of Hamilton's Equations unchanged

$$
\begin{array}{ll}
q \rightarrow Q(q, p) & \dot{Q}=\frac{\partial \tilde{H}}{\partial P} \\
p \rightarrow \tilde{P}(q, p) & \dot{H}(P, Q),
\end{array}
$$

B. We considered infinitessimal transformations depending on a parameter $\lambda$. The only allowed infinitetessimal $v$ transformations take the form canonical

For some function $G$, called the generator of transformation.
C. The transformation preserves the symplectic form. This means that if we curite:

$$
z^{i}=(q, p)
$$

So that

$$
\dot{z}^{i}=J^{i y} \frac{\partial H}{\partial z^{j}} \quad\left(\begin{array}{c|c}
0 & 1 \\
\hline-1 & 0
\end{array}\right)=J^{i y}
$$

Then it the canonical transform is: matrix

$$
\begin{array}{ll}
z \rightarrow y^{\prime} & \text { with } \quad M^{i}=\frac{\partial z^{i}}{\partial y^{i}} \\
H(z)=\tilde{H}(y)
\end{array}
$$

then

$$
m J m^{\top}=J
$$

Jacobian map
with

$$
\dot{y}^{i}=J^{i y} \frac{\partial \tilde{H}}{\partial y^{j}}
$$

D. Finally Phase Space is conserved:

$$
\frac{d}{d \lambda}(\Delta Q \Delta P)=\left(\frac{\partial\left(d Q / d_{\lambda}\right)}{\partial q}+\frac{\partial(d P / d \lambda)}{d p}\right)
$$

Which follows immediately the fact $G(q, p)$ generates the transformation

$$
\frac{\partial^{2} G}{\partial q \partial p}-\frac{\partial^{2} G}{\partial p \partial q}=0
$$

E. Change under 6 of observable $O(p, q)$ :

Then $\delta O \equiv O(P, Q)-O(p, q)$ is

$$
\begin{aligned}
& \delta 0=\frac{\partial 0}{\partial q} \delta q+\frac{\partial 0}{\partial p} \delta p \\
& S_{0}=\delta q=+\partial G / \partial p \lambda, \text { etc so } \\
& \delta O=\left(\frac{\partial O}{\partial q} \frac{\partial G}{\partial p}-\frac{\partial O}{\partial p} \frac{\partial G}{\partial q}\right) \lambda \\
& \delta O=\{0, G\} \lambda \quad \leftarrow \text { transformation of } O \\
& \text { under } G
\end{aligned}
$$

- So if 6 leaves $H$ invariant $\delta H=0$ then

$$
\dot{G}=\{G, H\}=0 \leftarrow G \text { is constant in time }
$$

Important Examples of Generators

Translations:


- You can easily check that this transformation is generated by

$$
G(q, p)=p
$$

- More generally with canonical variables ( $q_{i}, p_{i}$ ) the function

$$
G=a^{i} p_{i}
$$

generates the transformation

$$
q^{i} \rightarrow q^{i}+\lambda a^{i} \quad p_{i} \rightarrow p_{i}
$$

Rotations:

Consider a rotation in the phase space

$$
\left(x, y, P_{x}, P y\right)
$$

$$
\begin{aligned}
& x(\theta)=x \cos \theta+y \sin \theta \\
& y(\theta)=-x \sin \theta+y \cos \theta \\
& p_{x}(\theta)=p_{x} \cos \theta+p_{y} \sin \theta \\
& p_{y}(\theta)=-p_{x} \sin \theta+p_{y} \cos \theta
\end{aligned}
$$

So for small $\theta$

$$
\begin{array}{ll}
x \rightarrow x+y \delta \theta & P_{x} \rightarrow p_{x}+P_{y} \delta \theta \\
y \rightarrow y-x \delta \theta & P_{y} \rightarrow p_{y}-p_{x} \delta \theta
\end{array}
$$

Then this is generated by

$$
G=y p_{x}-x p_{y} \quad \text { (Check me! }
$$

- If more generally

$$
G=n \cdot \vec{L}=\vec{n} \cdot(\vec{r} \times \vec{p})
$$

The $n$

$$
\begin{aligned}
& \delta \stackrel{\rightharpoonup}{r}=\delta \theta \frac{\partial \sigma}{\partial \vec{p}}=\delta \theta \frac{\partial}{\partial \vec{p}} \stackrel{\rightharpoonup}{p} \cdot(\stackrel{\rightharpoonup}{n} \times \vec{r}) \\
& \delta \stackrel{\rightharpoonup}{r}=\delta \theta \vec{n} \times \vec{r}
\end{aligned}
$$

Similarly

$$
\delta \vec{p}=-\delta \Theta \partial G / \partial \vec{r}=-\delta \theta \frac{\partial}{\partial \vec{r}} \vec{r} \cdot(p \times \vec{n})=\delta \theta \stackrel{\rightharpoonup}{n} \times \vec{p}
$$

Finally we may take the Hamiltonian itsself

$$
\begin{array}{ll}
q \rightarrow q+\frac{\partial H}{\partial p} t & \dot{q}
\end{array}=\frac{\partial H}{\partial p}
$$

So we that the Hamiltonian generates time translations

Poisson Bracket and Canonical Transformations

- Poisson Brackets are invariant under canonical transformations. For a direct proof using the Symplectic matrix see Tong.
- Take an observable $W(p, q)$ (e,g. kinetic energy) In the new coordinates the observable has a different function al form, but same value:

$$
\widetilde{W}(p, Q)=W(p, q) \quad \text { at all time }
$$

But

$$
\frac{d \widetilde{W}}{d t}=\{\widetilde{W}, \widetilde{H}\}_{\underline{Q}}=\frac{d W}{d t}=\{W, H\}_{p q}
$$

So these $\{\widetilde{W}, \tilde{H}\}_{p Q}=\{W, H\}_{p q}$ are the same for all $w$ and $H$

Summary of Infinitessimal Transformations and invariance of Poisson Brackets: 8

- But nowhere did we use the specific form of $H$, or $\tilde{H}$, or $w$ or $W$
- So this is ar relation between Poisson brackets

$$
\{\tilde{F}, \tilde{G}\}_{p Q}=\{f, g\}_{p q},
$$

(where

$$
\tilde{F}(P, Q)=f(p, q)
$$

have the same values but different functional forms)

- Thus we are led to a new statement about canonical transforms. If a transform preserves the Poisson structure

$$
\begin{gathered}
\left\{Q_{i}, Q_{j}\right\}_{p, q}=\left\{P_{i}, P_{j}\right\}_{p, q}=0 \\
\left\{Q_{i}, P_{j}\right\}_{p q}=\delta_{i y}
\end{gathered}
$$

Then the transform

$$
\begin{aligned}
& q \rightarrow Q(q, p) \\
& p \rightarrow P(q, p)
\end{aligned}
$$

is canonical

