Phase Space

. It is informative to study the motion of the system in the x-p plane Take the simple pendulum: $Pe = \partial L = ml^2 \hat{\Theta}$ $\partial \Theta$ 0°T

• For small oscillations, a trajectories energy
is:
$$E = P = mglcos = mglcos = 2ml^2$$

$$\frac{2}{2ml^2}$$
 + $\frac{mgl\theta^2}{2}$ + const

Phase portrait of a pendulum

Liouville Theorem
• Now consider another phase-space plot. For an
ensemble at particles undergoing constant
acceleration
$$(x(t) = x_0 + v_0 + 1/2at^2)$$

A map from:
 $Q(t) = 1 at^2 + q + p + 1 + (q, p) \rightarrow (Q, P)$
 $P(t) = mat + p$
 $P(t) = phase-space volume.''
 $P(t) = phase + q(t) + q(t)$
 $P(t) = p + P(q) + q(t)$
 $P(t) = p + P(q) + q(t) +$$

Liouville Theorem: the comoving phase-space volume is constant in time · A more formal procedure/proof is the following R(t)RLt This is a "comoving" volume meaning the boundary follows the EOM Then the area at time t is $A(t) = \int dQdP = \int \left| \frac{\partial(Q,P)}{\partial(qP)} \right| dqdp$ $R(t) \qquad R(t_p) \qquad$ we will show now that the determinant is unity. Thus the areas at the final and initial times are equal $A(t) = \int_{R(t_{o})} dq dp = A(t_{o})$ Proof : $Q(t) = q + \frac{\partial H(q,p)}{\partial p} t$ $P(t) = p - \frac{\partial H}{\partial q}(q, p)t$

So a(a,p) aq/ag aq/ap	
Jarg, PJ = 2P/2g 2P/2g	
$= \left[\begin{array}{cc} + t \frac{\partial^2 H}{\partial q \partial p} & t \frac{\partial^2 H}{\partial p^2} \\ \end{array} \right]$	· · · · ·
$t \partial^2 H / \partial p^2 = 1 - t \partial^2 H$	H/2p 2q
$= \mathbf{I} + t \left(\frac{\partial^2 H}{\partial q \partial p} - \frac{\partial^2 H}{\partial p \partial q} \right) +$	0(t²)
$= 1 + O(t^2)$	neglect
So the volume is preserved by the	map.
More Coordinates	· · · · ·
In general	
$A(t) = \int dQ' dP_1 dQ' dP_2 \cdots -$	· · · ·
$= \int \left \frac{\partial(Q, P)}{\partial(q, p)} \right dq' dp_1 dq^2 dp_2$	· · · · ·
$(\mathcal{R}, \mathcal{L}_{\mathcal{U}})$	
= A(to), provided this determine is unity (it is?)	nant

Proof:	· · ·	• •	• •		
$q' \rightarrow Q' = q' + \frac{\partial H}{\partial p};$	· · ·		· ·		• •
$P_i \rightarrow P_i = P_i - \frac{\partial H}{\partial q_i} t$		· · ·			• •
The Jacobian of the map	<i>ìs</i>			• •	
$M = det \left(\begin{array}{cc} \partial Q^{i} & \partial Q^{i} \\ \overline{\partial q} \partial & \overline{\partial P} \partial \end{array} \right)$				• •	
$\left(\begin{array}{c} \frac{\partial P}{\partial q^2} & \frac{\partial P_i}{\partial P_2} \right)$	· · · ·	· ·	· ·	• •	• •
$= det \left(\begin{array}{c} S_{3}^{i} + \frac{\partial^{2} H}{\partial p_{i} \partial q^{3}} \\ \end{array} \right)$	· · · ·	<u>2</u> 29:	H Əpj	t	
$\left(\begin{array}{c} \mathcal{L} \\ \mathcal{L} \\ \frac{\partial^2 H}{\partial q^i \partial q^j} \right)$		j _ {	$\frac{\partial^2}{\partial p}$	- 29	· ·
• Then note for a matrix	M	· ·	· ·	3.0	· / · ·
det M = exp Tr log M	· · · ·	· ·	· ·	• •	• •
just probe me by u	vor ki	ng i	n th	e	· ·
eigenbasis of M			• •	• •	

Now in this case the matrix M is close to the identity small time $M = II + t M^{(1)}$ $Tr \log M \simeq t Tr M^{(1)}$ $\log M \simeq + M^{(1)}$ $\det M \simeq e^{t \operatorname{Tr} M^{(1)}} \simeq 1 + t \operatorname{Tr} M^{(1)}$ • But in this case $Tr M^{(1)} = \frac{\partial^2 H}{\partial p_i \partial q_i} - \frac{\partial^2 H}{\partial p_i \partial q_i} = 0$ So the volume in phase space of ang comoving region is constant in time! (since the det of the map is unity)