Phase Space

- It is informative to study the motion of the system in the $x-p$ plane Take the simple pendulum:

$$
\int_{0} \theta=\pi \quad P \theta=\frac{\partial L}{\partial \theta}=m l^{2} \dot{\theta}
$$

- For small oscillations, a trajectories energy is:

$$
\begin{aligned}
E & =\frac{p_{\theta}^{2}}{2 m l^{2}}-m g l \cos \theta \\
& \simeq \frac{p_{\theta}^{2}}{2 m l^{2}}+m g l \frac{\Theta^{2}}{2}+\text { const }
\end{aligned}
$$

- Thus in the phase space $\left(\theta, P_{\theta}\right)$ the trajectory is a circle, after choosing appropriatie units $m^{\prime}=g=l=1$.
- For larger values of E, the circles are deformed, and ultimately changed completely when $E^{\prime}>E_{\text {separatirix }}=2 \mathrm{mgl}$. Then the pedulum goes around in a circle, clockwise or counter-clockwise
- We see how informative the phase space can be!

Phase portrait of a pendulum

Liouville Theorem
(next page)

- Now consider another phase-space plot. For an ensemble of particles undergoing constant acceleration $\quad\left(x(t)=x_{0}+v_{0} t+1 / 2 a t^{2}\right)$

$$
\left.\begin{array}{l}
Q(t)=\frac{1}{2} a t^{2}+q+\frac{p}{m} t \\
P(t)=\text { mat }+p
\end{array}\right\} \begin{aligned}
& \text { A map from: } \\
& (q, p) \rightarrow(Q, p) \\
& \hat{p}
\end{aligned}
$$

- The next figure shows how an ensemble of particles starting in the square in the lower left evolves in time (see next page)
Liouville Theorem
- Quite generally the "phase-space volume" covered by the ensemble, does not grow in magnitude in time, but stretches and changes shape:
Simple Proof

$$
\begin{aligned}
& q \rightarrow Q(t)= q+\dot{Q}(p, q) t \\
& p \rightarrow P(t)=p+\dot{P}(q, p) t \\
& t \text { is small }
\end{aligned}
$$

- How does the volume change in time:

$$
d(\Delta p)=\left(\left.\dot{P}\right|_{\text {top }}-\left.\dot{P}\right|_{\text {bottom }}\right) d t=\frac{\partial \dot{p}}{\partial p} \Delta p d t
$$

Phase space volume conserved

Similarly

$$
\begin{aligned}
d(\Delta Q) & =\left(\left.\dot{Q}\right|_{\text {right }}-\left.\dot{Q}\right|_{\text {left }}\right) d t \\
& =\frac{\partial \dot{Q}}{\partial q} \Delta q d t
\end{aligned}
$$

- So

$$
\begin{aligned}
d(\Delta P \Delta Q) & =\Delta P d(\Delta Q)+d(\Delta P) \Delta Q \\
& =\left(\frac{\partial \dot{Q}}{\partial q}+\frac{\partial \dot{P}}{\partial p}\right) d t \Delta p \Delta q
\end{aligned}
$$

So

Change in phase-space volume of square

Liouville Theorem: the comoving phase-space volume is constant in time

- A more formal procedure/proof is the following:

This is a "comoving" volume meaning the boundary. follows the Eon

- Then the area at time t is

$$
A(t)=\int_{R(t)} d Q d p=\int_{R\left(t_{0}\right)}\left|\frac{\partial(Q, p)}{\partial(q, p)}\right| d q d p
$$

we will show now that the determinant is unity. Thus the areas at the final and instal times are equal

$$
A(t)=\int_{R\left(t_{0}\right)} d q d p=A\left(t_{0}\right)
$$

Proof:

$$
\begin{aligned}
& Q(t)=q+\frac{\partial H}{\partial p}(q, p) t \\
& P(t)=p-\frac{\partial H}{\partial q}(q, p) t
\end{aligned}
$$

So

$$
\left.\begin{aligned}
\left|\frac{\partial(Q, p)}{\partial(q, p)}\right|
\end{aligned}\left|=\left|\begin{array}{cc}
\partial Q / \partial q & \partial Q / \partial p \\
\partial P / \partial q & \partial P / \partial q
\end{array}\right|\right] \begin{array}{cc}
1+\frac{\partial^{2} H}{\partial q \partial p} & t \frac{\partial^{2} H}{\partial p^{2}} \\
t \partial^{2} H / \partial p^{2} & 1-t \partial^{2} H / \partial p \partial q
\end{array} \right\rvert\,, ~(\underbrace{}_{\text {neglect }})
$$

So the volume is preserved by the map.
More Coordinates
In general

$$
\begin{aligned}
A(t)= & \int_{R(t)} d Q^{\prime} d P_{1} d Q^{2} d P_{2} \\
= & \int_{R\left(t_{0}\right)}\left|\frac{\partial(Q, p)}{\partial(q, p)}\right| d q^{\prime} d p_{1} d q^{2} d p_{2} \cdots
\end{aligned}
$$

$=A\left(t_{0}\right)$, provided this determinant is unity (it is!)

Proof:

$$
\begin{aligned}
& q^{i} \rightarrow Q^{i}=q^{i}+\frac{\partial H}{\partial p_{i}} t \\
& p_{i} \rightarrow P_{i}=p_{i}-\frac{\partial H}{\partial q_{i}} t
\end{aligned}
$$

The Jacobian of the map is

$$
\begin{aligned}
M & =\operatorname{det}\left(\begin{array}{ll}
\frac{\partial Q^{i}}{\partial q^{j}} & \frac{\partial Q^{i}}{\partial p_{j}} \\
\frac{\partial p_{i}}{\partial q^{j}} & \frac{\partial p_{i}}{\partial p_{j}}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
\delta_{j}^{i}+\frac{\partial^{2} H}{\partial p_{i}} \frac{\partial q^{j}}{} & \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} t \\
t \frac{\partial^{2} H}{\partial q^{i} \partial q^{j}} & \delta_{i}^{j}-t \frac{\partial^{2} H}{\partial p_{j} \partial q^{i}}
\end{array}\right)
\end{aligned}
$$

- Then note for a matrix M

$$
\operatorname{det} M=\exp \operatorname{Tr} \log M
$$

个 just prove me by working in the eigenbasis of M

- Now in this case the matrix M is close to the identity

$$
\begin{aligned}
& \text { to the identity } \\
& \qquad M=I 1 t^{\text {small time }} \\
& \log M \simeq t M^{(1)} \\
& \operatorname{det} M \simeq e^{t \operatorname{Tr} M^{(1)}} \operatorname{Tr} \log M \simeq 1+\operatorname{Tr} M^{(1)} \\
&
\end{aligned}
$$

- But in this case

$$
\operatorname{Tr} M^{(1)}=\frac{\partial^{2} H}{\partial p_{i} \partial q^{i}}-\frac{\partial^{2} H}{\partial p_{i} \partial q^{i}}=0
$$

So the volume in phase space of any comoving region is constant in time! (since the det of the map is unity)

