


Phase portrait of a simple pendulum
Phase portrait of a pendulum
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• A more formal procedure )proof is the

following :
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So the volume is preserved by the map.

More Coordinates

In general
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Proof :

qi → Qi = gi t alt t
op ;

Pi
→ P; = pi - alt t .

2g ;

The Jacobian of the map is
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• Then note for a matrix M

det M = exp Tr log M

[
just prove me by working in the

eigen basis of M



• Now in this case the matrix M is close

to the identity small time
&

M = It t in
' "
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• But in this case

Tr M ' " = giltzgi - gi=O
So the volume in phase space of any

cornering region is constant in time!

(since the det of the map is unity )


