Phase space density	
 We have discussed that the 	phase
space volume of any given "co	moving
région remains fixed in time.	٥
 By co-moving we mean that the 	2
boundaries of the region	evolve
with the EOM. (see below)	
Phase space volume conserved	
35	
0.0	
Thin and long here	
2.5 (Q,P) -	Comovina
2 -	phase soare
$E + \Delta E$	Cell
The area of the	
1 - E parallelograms are	
$0.5 \qquad 0.5 \qquad 0.5 \qquad \text{the same at the initial}$	
he dots	
indicates 0 0.5 1 1.5 2 2.5 3 3.5	
particles	
The phase space density is	
$\int (I - a) = I A I - ia$	21
$J(\tau, \varphi, p) - a v is$	The
ag ap	
number of particles per phase spo	ace volume.

• The number of partices is $N = \int dq dp f(t, q, p)$ ~ comoving"

• The number of particles in each cell can not change under the Hamiltonian evolution. Since, if a particle touches the boundary, it has the same initial condition (q, p) for the subsequent evolution as the boundary^ point. The boundary point and the particle would then follow each other thereafter. In addition, if we run the Hamiltonian evolution in reverse, then the particle would remain on the boundary the particle would remain on the boundary at all negative times.

• Since the number in a cell is constant and the area of the cell is constant, the phase space density f(t,q,p) is also constant in time.

 $\frac{df}{dt} = 0$ Now $df = \partial f + \partial f dq + \partial f dp = 0$ $dt \partial t \partial q dt \partial p dt = 0$

So since
$$\dot{x} = \partial H/\partial p$$
 and $\dot{p} = -\partial H/\partial x$
we have
 $\partial f + \partial f \partial H - \partial f \partial H = 0$
 $\partial t + \partial q \partial p \partial p \partial q$
The structure is known as the Poisson
bracket
 $\{f, H\} = \partial f \partial H - \partial f \partial H$

we will discuss Poisson Brackets in more generality in the next section. For now we note that the Liouville equation can be written

 $\frac{\partial f}{\partial t} + \int f + \int f = 0$