The Kepler Problem and HJ theory

- Now let us give one more example of the HJ theory now in two dimensions

$$
L=1 / 2 m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-U(r)
$$

$$
u(r)=-k / r
$$

- The corresponding Hamiltonian is:

$$
H=\frac{\rho_{r}^{2}}{2 m}+\frac{\rho_{\theta}^{2}}{2 m r^{2}}+u(r)
$$

- with HJ equation

$$
\frac{\partial S}{\partial t}=-H\left(r, \theta, \frac{\partial S}{\partial r}, \frac{\partial S}{\partial \theta}\right)
$$

- Then we will separate variables as before

$$
\begin{aligned}
& S=-E t+W(r, \theta) \quad \text { yielding: } \\
& E=\frac{1}{2 m}\left(\frac{\partial W}{\partial r}\right)^{2}+\frac{1}{2 m r^{2}}\left(\frac{\partial W}{\partial \theta}\right)^{2}+U(r)
\end{aligned}
$$

\# E is a constant here, which is interpreted as energy from $\theta \Delta$

- Now given the form of the theory we separate variables further

$$
W(r, \theta)=W_{r}(r)+W_{\theta}(\theta)
$$

- This yields

$$
E=\frac{\frac{1}{2 m}\left(\frac{\partial W}{\partial r} r\right)^{2}+u(r)}{L_{\text {cons }}}+\frac{f_{c n} \text { of } r}{\frac{1}{2 m r^{2}}}\left(\frac{\partial W}{\partial \theta}\right)^{2}
$$

- So following the usual logic of separation of variables, since we could leave r fixed and change θ, and all fins of r are constant, so we must have

$$
\left(\frac{\partial W_{\theta}}{\partial \theta}\right)=\text { cons } \equiv l \quad W_{\theta}=l \theta
$$

- So rearranging
will interpret as

$$
E=\frac{1}{2 m}\left(\frac{\partial W_{1}}{\partial r}\right)^{2}+\frac{\ell^{2}}{2 m r^{2}}+u(r)
$$

- And we can rearrange this

$$
W_{r}(r)= \pm \int^{r} d r^{\prime}\left(2 m\left(E-U_{e f f}\left(r^{\prime}\right)\right)^{1 / 2}\right.
$$

- So the complete solution is

$$
S=-E t+\ell \theta+\int^{r} d r^{\prime}\left(2 m\left(E-u_{e f f}(r)\right)^{1 / 2}\right.
$$

- Now we have the equations of canonical transform makes sense

$$
\begin{aligned}
& P_{r}=\frac{\partial S}{\partial r}=\sqrt{2 m\left(E-u_{\text {eff }}(r)\right)} \quad \frac{p_{r}}{2 m}+u_{\text {eff }}= \\
& P_{\theta}=\frac{\partial S}{\partial \theta}=l \longleftarrow \text { this justifies calling } l \\
& \text { the angular momentum }
\end{aligned}
$$ momenta conjugate to r, θ

- Then the stationary phase conditions give the equation of motion for r vs.t and θ vs.t

$$
\frac{\partial S}{\partial E}=-t+\int^{r} d r^{\prime} \sqrt{\frac{m}{2}} \frac{1}{\left(E-u_{e f f}(r)\right)^{1 / 2}}=0
$$

亿 stationary phase, this is $r(t)$ for a particle in a ID potential well

- Finally using $E-U_{e f f}(r)=E+k / r-l^{2} / 2 m r^{2}$ we find
this is the Ellipse

$$
\frac{\partial S}{\partial l}=\theta-\int^{r} \frac{d r}{\ell^{2} / r^{2}}\left(2 m\left(E+k / r-\ell^{2} / 2 m r^{2}\right)\right)^{1 / 2} \quad=0
$$

ヘ look back at Kepler notes!

- this gives after changing variables to $u \equiv 1 / r$, and completing the square and doing the integral over u (see kepler notes!)

$$
\theta=\cos ^{-1}\left(\frac{1 / r-1}{\sqrt{1+E / \varepsilon_{0}}}\right) \quad \varepsilon_{0} \equiv \frac{m k^{2}}{2 l^{2}}
$$

or

$$
\frac{1}{r}=1+e \cos \theta \text { with } e=\left(1+2 E l^{2} / m k^{2}\right)^{1 / 2}
$$

So we see how simply we get the elliplic motion!

