Problem 1. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+\left(\omega_{0} x_{1}\right)^{2}+\left(\omega_{0} x_{2}\right)^{2}\right) \tag{1}
\end{equation*}
$$

This is an example of an integrable system, which means if the phase space consists of $2 n$ generalized coordinates there are $2 n-1$ constants of the motion. We will find and interpret these constants here.
(a) Show that

$$
\begin{equation*}
J_{3}(\boldsymbol{r}, \boldsymbol{p})=\frac{1}{2}\left(x_{1} p_{2}-p_{1} x_{2}\right) \tag{2}
\end{equation*}
$$

generates rotations in the plane. Why is it constant in time?
(b) Determine the infinitesimal transformation generated by

$$
\begin{equation*}
J_{1}(\boldsymbol{r}, \boldsymbol{p})=\frac{1}{2 \omega_{0}}\left(\frac{1}{2} p_{1}^{2}+\frac{1}{2} \omega_{0}^{2} x_{1}^{2}-\frac{p_{2}^{2}}{2}-\frac{1}{2} \omega_{0}^{2} x_{2}^{2}\right) . \tag{3}
\end{equation*}
$$

Show that the computed transformation leaves the Hamiltonian invariant, and that this implies that $\dot{J}_{1}=\left\{J_{1}, H\right\}=0$. Give a physical interpretation of this quantity.
(c) Use the Poisson theorem to deduce a third conserved quantity J_{2} :

$$
\begin{equation*}
J_{2}=\frac{1}{2 \omega_{0}}\left(p_{1} p_{2}+\omega_{0}^{2} x_{1} x_{2}\right) \tag{4}
\end{equation*}
$$

Determine the associated infinitesimal canonical transformation generated by this conservation law, and verify that it is a symmetry of the Hamiltonian.
(d) We have found three integrals of motion. Using similar manipulations to part (c), one may show that

$$
\begin{equation*}
\left\{J_{i}, J_{j}\right\}=i \epsilon_{i j k} J_{k} \tag{5}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(\frac{H}{2 \omega_{0}}\right)^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2} \tag{6}
\end{equation*}
$$

Thus any random orbit is selected by choosing J_{1}, J_{2}, J_{3} to lie on the surface of a sphere. Describe the motion of the orbit in each of the following limiting cases
(i) $J_{1}=J_{2}=0$
(ii) $J_{2}=J_{3}=0$
(iii) $J_{1}=J_{3}=0$

Problem 2. Phase-space and its characteristic flow

(a) If the number of particles per phase space volume (called the phase-space density)

$$
\begin{equation*}
f(t, q, p)=\frac{d N}{d^{n} q d^{n} p} \tag{7}
\end{equation*}
$$

is conserved, then the phase-space density obeys a conservation law

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{\partial\left(f \dot{q}^{i}\right)}{\partial q^{i}}+\frac{\partial\left(f \dot{p}_{i}\right)}{\partial p_{i}}=0 . \tag{8}
\end{equation*}
$$

This equation of motion is analogous to a compressible fluid, where the density $\rho(t, \boldsymbol{x})$ satisfies the continuity equation

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{v})=0, \tag{9}
\end{equation*}
$$

with $\boldsymbol{v}(t, \boldsymbol{x})$ the velocity of the fluid. Eq. (8) does not require Hamilton's EOM, it just says that once a particle always a particle, regardless of the EOM.
(i) Show that if Hamilton's EOM are also satisfied and particle number is conserved, the Liouville equation (also called the free-streaming Boltzmann equation)

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q^{i}} \dot{q}^{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}=0, \tag{10}
\end{equation*}
$$

is satisfied, and that this equation can be written as

$$
\begin{equation*}
\partial_{t} f+\{f, H\}_{p, q}=0, \tag{11}
\end{equation*}
$$

(ii) Eq. (10) is analgous to an incompressible fluid, where $\nabla \cdot \boldsymbol{v}=0$, and thus we have from Eq. (9)

$$
\begin{equation*}
\partial_{t} \rho+\boldsymbol{v} \cdot \nabla \rho=0 . \tag{12}
\end{equation*}
$$

What is the phase-space analog of the incompressibility constraint $\nabla \cdot \boldsymbol{v}=0$?
(b) Eqs. (10) and (11) imply that $f(t, q, p)$ that f is constant along the flow lines. Heuristically, this means that we can find the solution to the equation Eq. (11) by tracing the trajectories backward in time to the initial time t_{0} where the initial condition $f_{0}(q, p)$ is specified. This is known as the method of characteristics, and we will develop this method here.
(i) Show by direct substitution that for a free particle $H=P^{2} / 2 m$ the solution to

$$
\begin{equation*}
\frac{\partial f(t, Q, P)}{\partial t}+\{f, H\}_{P, Q}=0 \tag{13}
\end{equation*}
$$

is

$$
\begin{equation*}
f(t, Q, P)=f_{0}\left(Q-\frac{P}{m} t, P\right) \tag{14}
\end{equation*}
$$

where $f_{0}(q, p)$ is the initial consition at time $t=0$. The somewhat confusing minus sign is just a reflection of the familiar fact that if I want to translate a function $F(x)$ forward by a distance $\Delta x=v t$, I want the new function $F(x-v t)$.
(ii) Show more generally that the characteristic solution to Eq. (13) is

$$
\begin{equation*}
f(t, Q, P)=f_{0}\left(q\left(Q, P ; t, t_{0}\right), p\left(Q, P ; t, t_{0}\right)\right) \tag{15}
\end{equation*}
$$

where $f_{0}(q, p)$ is the initial condition at time $t=t_{0}$.
Here the characteristic solution is as follows - start at time t_{0} with q, p and flow forward in time to time t were the coordinates are Q, P. This flow determines the map $(q, p) \rightarrow Q\left(q, p ; t, t_{0}\right)$ and $(q, p) \rightarrow P\left(q, p ; t, t_{0}\right)$. The inverse map is $q\left(Q, P ; t, t_{0}\right)$ and $p\left(Q, P ; t, t_{0}\right)$. Thus the characteristic solution can be written or more loosely

$$
\begin{equation*}
f(t, Q, P)=f_{0}(q, p) . \tag{16}
\end{equation*}
$$

Hint: To prove Eq. (15), first show that q, p obey the EOM

$$
\begin{align*}
\partial_{t} q\left(Q, P ; t, t_{0}\right) & =-\left(\frac{\partial q}{\partial Q} \frac{\partial H}{\partial P}-\frac{\partial q}{\partial P} \frac{\partial H}{\partial Q}\right) \tag{17}\\
\partial_{t} p\left(Q, P ; t, t_{0}\right) & =-\left(\frac{\partial p}{\partial Q} \frac{\partial H}{\partial P}-\frac{\partial p}{\partial P} \frac{\partial H}{\partial Q}\right) \tag{18}
\end{align*}
$$

and then prove Eq. (15).
(iii) Using the same notation, what are

$$
\begin{equation*}
\partial_{t_{0}} q\left(Q, P ; t, t_{0}\right)=? \quad \partial_{t_{0}} p\left(Q, P ; t, t_{0}\right)=? \tag{19}
\end{equation*}
$$

(c) The phase space density at the initial time $t=0$ is

$$
\begin{equation*}
f(0, x, p)=\frac{1}{2 \pi \Delta x_{0} \Delta p_{0}} \exp \left[-\frac{x^{2}}{2 \Delta x_{0}^{2}}-\frac{\left(p-P_{0}\right)^{2}}{2 \Delta p_{0}^{2}}\right] \tag{20}
\end{equation*}
$$

(i) Determine the phase space distribution $f(t, x, p)$ at later time t for a group of free particles, i.e. $H(x, p)=p^{2} / 2$.
(ii) Sketch contour in the phase-space (x, p) where $f(t, x, p)$ is $1 / e$ of its maximum (with $e \simeq 2.718$), at time $t=0$ and at a significantly later time.

For definiteness take units where $m=\Delta x_{0}=\Delta p_{0}=1$ take $P_{0}=3 \Delta p_{0}$.
(d) The phase space density at the initial time is

$$
\begin{equation*}
f(0, x, p)=\frac{1}{2 \pi \Delta x_{0} \Delta p_{0}} \exp \left[-\frac{\left(x-X_{0}\right)^{2}}{2 \Delta x_{0}^{2}}-\frac{p^{2}}{2 \Delta p_{0}^{2}}\right] \tag{21}
\end{equation*}
$$

(i) Determine the phase space distribution $f(t, x, p)$ at later time t for a group of particles in a harmonic oscillator, i.e $H(x, p)=\left(p^{2}+\omega_{0}^{2} x^{2}\right) / 2$.
(ii) Sketch contour in the phase-space (x, p) where $f(t, x, p)$ is $1 / e$ of its maximum (with $e \simeq 2.718$) at time $t=0$ and at several subsequent times.

For definiteness take units where $m=\Delta x_{0}=\Delta p_{0}=1$. Take $X_{0}=3 \Delta x_{0}$ and $m \omega_{0}=3 \Delta p_{0}$

