
Problem 1. Transmitted and reflected wave forms

A string is divided into two parts with mass density µ1 on the left, and mass density µ2

on the right. Consider a wave form, yin(x− v1t), traveling from the left to the right, which
scatters off the change in density (or impedance).

(a) Show that when yin(t, x) is a traveling plane wave, Aeikx−wt, the reflected and trans-
mitted waves respectively take the form:

B =A r̃, ei(−kx−ωt) , (1)

C =A t̃ ei(k
′x−ωt) , (2)

with k′ = ω/v2, and

r =− Z2 − Z1

Z1 + Z2

, (3)

t =
2Z1

Z1 + Z2

. (4)

where the wave impedance is Z =
√
Tµ.

(b) Continue working with the plane waves of part (a). Show that the energy transported
per time by the incoming wave plane wave of part (a), equals the sum of the energies
transported per time of the outgoing plane waves (i.e. the reflected and transmitted
waves).

(c) Now take a general real wave form yin(x−vt), and assume that the wave form yin(x−vt)
has no appreciable support after a distance L, i.e. yin(x) ' 0 for |x| > L. Determine
the wave form of the transmitted and reflected waves in coordinate space in terms of
yin(x− vt).
Show by integration of these forms that at late times t� L/v the total energy in the
transmitted and reflected waves equals the energy in the incoming wave.
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Solution:

(a) The general solution on the left is with harmonic time dependence e−iωt is

yL(t, x) = Aeikx−iωt +Be−ikx−ωt (5)

with k = ω/v1 ∝ µ1 with v1 =
√
T/µ1

The general solution on the right with harmonic time dependence is

yR(t, x) = Ceik2x−iωt +De−ik2x−ωt (6)

with k2 = w/v2 ∝
√
µ2.

The frequency dependence of the two waves must be the same in order to satisfy the
boundary conditions (i.e. that the string is continuous) at all times. The tension is the same
on both sides, otherwise the midlle point would move to the right or left.

There is no wave coming from the right and one can set D = 0. At the middle point we
have continuity

A+B = C (7)

We also have a continuity of derivative

T
∂y

∂x

∣∣∣∣
L

= T
∂y

∂x

∣∣∣∣
R

(8)

which says that (if dy/dx is positive) that the upward force by the right balances the down-
ward force by the left, otherwise the middle point would have a net force leading (since it
has negligible mass) to infinite accelearation.

TA(ik) + TB(−ik) = TC(ik2) (9)

Solving these equations equation using k2 =
√
µ2/µ1k leads to the desired result

r̃ =
B

A
=
Z1 − Z2

Z1 + Z2

(10)

t̃ =
C

A
=

2Z1

Z1 + Z2

(11)

with Z =
√
Tµ.

(b) Here we simply use the expression for the Poynting flux from lecture.

Sx = −T ∂y
∂x

∂y

∂t
(12)

For a plane wave eikx−iωt this evaluates to

S
x

=
Z

2
ω2|A|2 (13)
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For a reflected wave e−ikx−iωt this evaluates to

S
x

= −Z
2
ω2|A|2 (14)

Drawing the pillbox around the central point (see figure) we should have

S
x

A + S
x

B = S
x

C (15)

Leading to a requirement that

|A|2 = |B|2 + |C|2Z2

Z1

(16)

i.e.

1 = r̃2 + t̃
2
(
Z2

Z1

)
(17)

So to verify energy conservation we need that

1 =
(Z1 − Z2)2

(Z1 + Z2)2
+

4Z1Z2

(Z1 + Z2)2
(18)

which obviously holds.

(c) By assumption

yA(t, x) =

∫ ∞
−∞

dk

2π
A(k)eik(x−vt) (19)

Instead of integrating over k we can integrate over frequency ω = vk. Changing variables

yA(t, x) =

∫ ∞
−∞

dω

2π
Â(ω) eiω((x/v)−t) (20)

where Â(ω) = A(k)/v. Let us denote

y0(x) = yA(0, x) =

∫ ∞
−∞

dk

2π
A(k)eikx (21)

=

∫ ∞
−∞

dω

2π
Â(ω)ei(ω/v)x (22)

which is the shape of the undisturbed incoming wave at a fixed time (t = 0).
The incoming wave is

yA(t, x) = y0(x− vt) (23)

The reflected wave is

yB(t, x) =

∫ ∞
−∞

dk

2π
B(k)eik(−x−vt) (24)

The transmitted wave takes the form

yC(t, x) =

∫ ∞
−∞

dk

2π
C(k)eik(x−v2t) (25)

=

∫ ∞
−∞

dω

2π
Ĉ(ω)eiω((x/v2)−t) (26)
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Our fourier analysis of (a) shows that

B̂(ω) = r̃Â(ω) (27)

And the relation between the amplitudes at the same frequency reads

Ĉ(ω) = t̃Â(ω) (28)

This follows because the boundary conditions are specified at all times at x = 0. The
incoming wave, the reflected wave, and the transmitted wave at x = 0 and arbitrary time
take the form

yA(t, 0)|x=0 =

∫
dω

2π
Â(ω)e−iωt (29)

yB(t, 0)|x=0 =

∫
dω

2π
B̂(ω)e−iωt (30)

yC(t, 0)|x=0 =

∫
dω

2π
Ĉ(ω)e−iωt (31)

Requiring continuity for instance reads

yA(t, 0) + yB(t, 0) = yC(t, 0) (32)

which will follow if
Â(ω) + B̂(ω) = Ĉ(ω) (33)

which should be compared to Eq. (7).
Thus the reflected wave is simply

yB(t, x) = r̃ y0(−x− vt) (34)

while the transmitted wave form is

yC(t, x) = t̃

∫ ∞
−∞

dω

(2π)
Â (ω) eiω((x/v2)−t) (35)

Pulling out a factor of v

yC(t, x) =t̃

∫ ∞
−∞

dω

(2π)
Â (ω) ei(ω/v)(v(x/v2)−t) (36)

=t̃ y0

(
v

v2

(x− v2t)

)
(37)

Then we can integrate the energy in these waves. The energy density is

ε =
1

2
µ(∂ty)2 +

1

2
T (∂xy)2 (38)

Then note that for any wave which moves entirely in one direction

∓ 1

v

∂y

∂t
=
∂y

∂x
(39)
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where the minus sign is for a right moving wave (x−vt) and the plus sign is for a left moving
wave (−x− vt). Thus for a right mover or a leftmover (but not for superposition)

µ(∂ty)2 = T (∂xy)2 (40)

and thus
ε = T (∂xy)2 (41)

The total energy density in a wave which is either right or left moving is for example

E =

∫ ∞
−∞

dx T (∂xy(±x− vt))2 (42)

=

∫ ∞
−∞

du T (∂uy(u))2 (43)

where here and below u is a dummy integration variable short for u = ±x− vt
We look well before and after the reflection so that the waves consist of well separated

either right or left movers. The total energy in A is thus

EA =

∫ ∞
−∞

du T (∂uy0(u))2 (44)

The energy in B is similarly

EB =

∫ ∞
−∞

du r̃2 T (∂uy0(u))2 (45)

The energy in C is

EC =

∫ ∞
−∞

dx t̃2 T

[
∂

∂x
y0

(
v

v2

(x− v2t)

)]2

(46)

Now it is convenient to define
u =

v

v2

(x− v2t) (47)

and then accounting for the change in measure dx→ du etc, we have

EC =

∫ ∞
−∞

du t̃2
v

v2

T [∂uy0 (u)]2 (48)

=

∫ ∞
−∞

du t̃2
Z2

Z1

T [∂uy0 (u)]2 (49)

where in passing to the second line we have used v/v2 = Z2/Z1. We see that since

1 = r̃2 + t̃2
Z2

Z1

(50)

we have
EA = EB + EC (51)

as could be hoped.
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Problem 2. Oscillations on a string

Consider a long string of mass density µ and tension T running along the x-axis. Attached
to the center of the string is a mass, m, as shown below (see the last page). The mass is
pushed and pulled by an an external harmonic force, F (t) = F0 cos(ωt) = Re[F0e

−iωt], in the
y direction.

The amplitude of the strings motion y(t, x) ∝ e−iωt is small enough to be treated in a
harmonic approximation.

(a) Determine the steady state solution, y(t, x), for the amplitude of the string to the right
and left of the mass.

(b) Compute the time averaged work done per time by the external force.
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Figure 1: A free body diagram for the motion of the mass m.

Solution:

(a) The first part we recognize that the solution to right and the left must take the forms

yL =Ae−ikx−iωt (52)

yR =Beikx−iωt (53)

Specifically the left solution consists only of left-movers, while the right solution consists
only of right movers. Continuity demands that we set A = B. Drawing a free body digram
of the mass (see below) which moves as ym(t) we determine a final constraint:

m
d2ym
dt2

=F (t) + T
dyR
dx
− T dyL

dx
(54)

The mass moves up and down harmonically. Continuity says

ym(t) = Ae−iωt (55)

Substituting the above forms into we find

−mω2A = F0 + TikA− T (−ikA) (56)

So since Tik = iZω with Z =
√
Tµ the wave impedance we find

A =
F0

−mω2 + 2iZω
(57)

This completes the solution

y(t, x) =

{
F0

−mω2+2iZω
e−ikx−iωt x < 0

F0

−mω2+2iZω
eikx−iωt x > 0

(58)
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Taking the real part this can be written

y(t, x) =
F0√

(mω)2 + (2Zω)2
cos(k|x| − vt+ φ0) φ0 = tan−1(2Zω/mω2) (59)

(b) The work done is
dW

dt
= ẏmF (t) (60)

Since these quantities vary harmonically as

ym = Ae−iωt ẏm = −iωAe−iωt F (t) = F0e
−iωt (61)

we can compute the average
dW

dt
=

1

2
Re[(−iωA)F ∗0 ] (62)

Substituting the amplitude from Eq. (57) into this last expression we find

dW

dt
=

1

2
Re

[
−iωF0

−mω2 + 2iZω
F ∗0

]
=

|F0|2ω2Z

(mω2)2 + (2Zω)2
(63)
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Problem 3. Time shift in a phase

A string of tension T and mass per length µ is separated in two parts by a small ring of mass
m. Consider the wave packet yin(x− vt) as described in the previous problem (problem 3),
incident upon the ring. At t = 0 the center of the wave incoming wave packet will arrive at
the ring, i.e. at negative times the wave the is centered around −v|t|.

(a) First consider a plane wave A(k) eikx−wt. Shown that the reflected and transmitted
amplitudes are

B(k) =A(k) r(k) ei(−kx−ωt) (64)

C(k) =A(k) t(k) ei(kx−ωt) (65)

where

r(k) =− k

k + ib
(66)

t(k) =
ib

k + ib
(67)

where b = 2µ/m has the units of wavenumber.

(b) Show that in general the reflected wave form is

ytrans(t, x) =b

∫ ∞
0

dξ e−bξ yin(x− vt+ ξ) (68)

yrefl(t, x) =− yin(−(x+ vt)) + b

∫ ∞
0

dξ e−bξ yin(−(x+ vt) + ξ) (69)

(c) When the mass m is very heavy, show that the reflection coefficient is

r(k) ' −eiφ(k) (70)

where φ(k) ' −b/k. The k-dependent phase has consequences.

Using the Fourier techniques of a previous problem, that a wavepacket incident on the
ring (take the gaussian of the previous problem for definiteness), is reflected, and that
that the center of the reflected wave packet is at

yc = −v(t− t0) (71)

where the time delay is

t0 =
1

v

dφ

dk
= +

b

vk2
0

(72)

Argue that this result also follows from the stationary phase condition.
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Solution:
(a) See also lecture. The left solution with frequency ω is

yL = Aeikx−iωt +Be−ikx−iωt (73)

While the right solution is
yR = Ceikx−iωt (74)

The boundary conditions are, first, continuity at x = 0 at all times

A+B = C . (75)

Second, we have F y
net = may(t) for the ring. Drawing a free body diagram for the ring

− T dyL
dx

+ T
dyR
dx

= mÿ (76)

Since the height of the ring is yR(t, 0) = Ce−iωt (or you could use yL(t, 0) = (A + B)e−iωt)
we have

− TA(ik) + TB(ik) + T (ikC) = −mω2C (77)

We solve these equations to find the expected result

r(k) =− k

k + ib
(78)

t(k) =
ib

k + ib
(79)

(b) The incoming wave is of the form

yA(t, x) =

∫ ∞
−∞

dk

2π
A(k)eik(x−vt) , (80)

=yin(x− vt) . (81)

The reflected wave is

yB(t, x) =

∫ ∞
−∞

dk

2π
r(k)A(k)eik(−x−vt) . (82)

Let us denote u = −(x+ vt)

yB(t, x) =

∫ ∞
−∞

dk

2π
r(k)A(k)eiku . (83)

This then becomes a convolution

yB(t, x) =

∫ ∞
−∞

du′yin(u− u′)r(u′) , (84)

=

∫ ∞
−∞

du′′yin(u′′)r(u− u′′) , (85)
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where

r(u′) =

∫
k

eiku
′ −k
k − ib

. (86)

This integral is easy to do using the table of Fourier transforms

r(u′) =

∫
k

eiku
′ −k
k + ib

, (87)

=

∫
k

eiku
′
(
−1 +

ib

k + ib

)
, (88)

=− δ(u′) + θ(−u′)bebu′ . (89)

So

yB(t, x) = −yin(u) + b

∫ 0

−∞
du′ yin(u− u′) ebu′ (90)

Leading to

yB(t, x) = −yin(−(x+ vt)) + b

∫ ∞
0

dξ e−bξ yin(−(x+ vt) + ξ) (91)

Similarly the transmitted wave is

yC(t, x) =

∫ ∞
−∞

dk

2π
t̃(k)A(k)eiku (92)

but now u = x− vt. So

yC(t, x) =

∫
u

yin(u− u′)t̃(u′) (93)

Here

t(u′) =

∫
k

eiku
′ ib

k + ib
(94)

=θ(−u′)bebu′ (95)

Leading to

yC(t, x) = b

∫ 0

−∞
yin(u− u′)ebu′ (96)

or

yC(t, x) = b

∫ ∞
0

e−bξyin((x− vt) + ξ) (97)

(c) The amplitude reflection coefficient is

r̃(k) =
−k
k + ib

' −k
k

(1− i b
k

) ' −e−iφ(k) (98)
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with φ(k) = b/k. We note the phase in an odd function of k

yR(t, x) = −
∫

dk

2π
eikxA(k)eiφ(k)eik(−x−vt) (99)

Then take the wave packet of the previous problem and expand near k0 we have

φ(k) + k(−x− vt) = φ(k0)− k0(x+ vt) + k̃(−(x+ vt) + φ′(k0)) (100)

Following the steps of the previous problem one

yR(t, x) = − cos(−k0(x+ vt) + φ0) g(−(x+ vt) + φ′(k0)) (101)

The center of the wave packet of the is given by the condition that the argument of g is zero

− xc(t)− vt+ φ′(k0) = 0 (102)

Solving

xc(t) =− vt+ φ′(k0) (103)

So we see that the reflected wave is slightly behind (less negative) than the naive expectation,
−vt, by b/vk2

0.

xc(t) = −vt+
b

vk2
0

(104)
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