
Problem 1. Oscillations with similar frequencies

Consider two particles of mass m coupled to the walls via springs with spring constant
k = mω2

0. The two particles are weakly coupled by a third spring with spring constant
k′ = mω′2 as shown below. The particles can move only in the x-direction, and the springs
are unstretched when the system is at rest. Assume that ω′ � ω0.

k
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(a) (3 points) If at time t = 0 the left particle is displaced by an initial position x0 and
the right particle is at rest, determine the subsequent oscillations of the system.

(b) (4 points) Plot qualitatively x1(t) and x2(t) in regime where k′ � k. Show all relevant
features. Answer qualitatively the following question: given a signal which is a sum of
sinusoids

A cos(ω1t) +B cos(ω2t+ φ) (1)

what is required to have prominent beats?

Now consider the case when the particles also experience dissipation. The drag force on the
particles is

Fdrag = −mηdx
dt
, (2)

and the drag coefficient is small η � ω′ � ω0. Starting at t=0, external forces are applied to
the particles. The forces on the first and second particles are F (t) and −F (t) respectively.
The particles are at rest for t < 0.

(c) (6 points) Determine the positions of the particles for t > 0 as an explicit integral over
F (t).

(d) (3 points) Determine the energy of the system for t > 0 as a double integral over F (t).

(e) (4 points) If F (t) is a time-dependent random force satisfying1

〈F (t)〉 =0 ,

〈F (t)F (t′)〉 =2Tmηδ(t− t′) .

Determine how the energy of the system evolves in time.

Here T is a constant parameter that can be interpreted as the temperature of an
external bath provided the force F (t).

1Imagine discrizing the system into steps of size ∆t, the force in each ∆t is F (t) = ±2Tmη/
√

∆t where
each sign occurs with 50% probability.
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Problem 2. A non-linear oscillator

An oscillator of mass m and resonant frequency ω0 has a damping force FD = −βv3 with
β > 0. The motion is initialized with amplitude a0 and no velocity at time t = 0.

(a) Define suitable dimensionless variables so that a dimensionless version of the equation
reads:

d2x

dt
2 + x+ ε

(
dx̄

dt̄

)3

= 0 (3)

What is the condition on β that the non-linear term may be considered small?

(b) If the oscillator starts at t̄ = 0 with x̄ = 1 with dx̄/dt̄ = 0, use secular perturbation
theory to determine approximate behavior of x̄(t̄). Show in particular that the ampli-
tude decreases as t̄−1/2 at late times. Use Mathematica or other program to determine
the exact numerical solution2, and plot the exact and approximate solution for ε = 0.3
up to a time t̄ = 160.

2Look up NDSolve and figure it out. I find the following Mathematica advice (parts I and II) by my
friend and colleague Mark Alford useful.
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 http://www.physics.wustl.edu/alford/mathematica/mathematica_intro.html 
http://www.physics.wustl.edu/alford/mathematica/mathematica_techniques.html
http://www.physics.wustl.edu/alford/


Problem 3. Anharmonic oscillations to quadratic order

Consider the oscillator with energy E in the potential

U =
1

2
mω2

0q
2 +

c

3
q3 (4)

where the anharmonic contribution is small. The oscillator is at the top of its arc at t = 0.
We will determine an approximation to q(t)

q(t) = q(0) + q(1) + q(2) (5)

to second order in c.

(a) Choose an appropriate set of units so that the equation of motion can be written with

d2q̄

dt̄2
+ q̄ + c̄ q̄2 = 0 , (6)

with initial condition q̄(0) = 1. q̄, c̄ and t̄ are dimensionless versions of q, c and t. To
lighten the notation we will drop the bars for the remainder of this problem. c̄ is small
in this problem; what does this imply for c?

(b) Solve for q(0), q(1), and q(2). You should find to order c2

q(t) = a cos(ωt)− a2c

2
+
a2c

6
cos(2ωt) +

a3c2

48
cos(3ωt) (7)

with

ω = 1− 5c2

12
+ . . . (8)

and amplitude a adjusted to reproduce the initial condition q(0) = 1 :

1 = a− a2

2
c+

a2c

6
+
a3c2

48
(9)

or

a(c) = 1 +
1

3
c+

29

144
c2 + . . . (10)

(c) The graph in Fig 1 compares solution in Eq. (7) to a numerical solution. Explain why
the perturbative solution fails qualitatively for c = 0.55.

(d) The motion is periodic with period T . Qualitatively sketch the power spectrum, i.e. if
q(t) is expanded in a Fourier series, q(t) =

∑
n qne

−i2πnt/T , sketch |qn|2 versus n. How
does increasing the non-linearity c change this spectrum?
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Figure 1: Analytical perturbative solution (yellow curve) compared to the numerical solution
(blue curve) versus time for q(t). Reading the graphs like words in a book, the comparison
is for c = 0.2, 0.3, 0.4 and 0.55 (so c = 0.3 is the top right graph).
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