Problem 1. A particle in a magnetic field

(a) Write down the Lagrangian and Hamiltonian for a particle in a magnetic field, $\boldsymbol{B}(\boldsymbol{r})$. Compute the Poisson brackets of velocity:

$$
\left\{v_{i}, v_{j}\right\}
$$

(b) Prove that the value of any function $f(q(t), p(t))$ of coordinates and momenta of a system at a time t can be expressed in terms of the values of p and q at $t=0$ as follows:

$$
\begin{equation*}
f=f_{0}+\frac{t}{1!}\left\{f_{0}, H\right\}+\frac{t^{2}}{2!}\left\{\left\{f_{0}, H\right\}, H\right\}+\ldots \tag{1}
\end{equation*}
$$

where $f_{0}=f(p(0), q(0))$. Apply this formula to evaluate $p^{2}(t)$ for a harmonic oscillator.
(c) Evaluate $\boldsymbol{v}(t)$ for a particle in a constant magnetic field \boldsymbol{B}_{0} using the results of this problem.

Problem 2. Canonical transformations and Poisson Brackets

Consider an infinitesimal change of coordinates, which is not necessarily canonical:

$$
\begin{align*}
& q \rightarrow Q=q+\lambda \frac{d Q(q, p)}{d \lambda} \tag{2}\\
& p \rightarrow P=p+\lambda \frac{d P(q, p)}{d \lambda} \tag{3}
\end{align*}
$$

Show that if the Poisson bracket is to remain fixed under the transformation, i.e.

$$
\begin{align*}
& \{Q, P\}=1 \tag{4}\\
& \{P, P\}=0 \tag{5}\\
& \{Q, Q\}=0 \tag{6}
\end{align*}
$$

then there must exist a $G(q, p)$ which generates the transformation. (Hint recall the following theorem: if a vector field is curl free, $\nabla \times \boldsymbol{v}=0$ it may be written as a gradient of a scalar function, $\boldsymbol{v}=-\nabla \phi$.)

