
Problem 1. (Optional) A tutorial on Fourier Transforms

This is intended as a warm up for a number of problems on waves. Answer all parts as briefly
as possible. All graduate students must know this all of this stuff if they want to succeed.

Define the fourier transform the physicist way:

F (k) =

∫
x

e−ikxf(x) f(x) =

∫
k

eikxF (k) (1)

Here integrals over wavenumbers k mean the following∫
x

=

∫ ∞
−∞

dx

∫
k

≡
∫ ∞
−∞

dk

2π
(2)

This own little notation that you might try – it is covenient since
∫
k

∫
x
eikx = 1. Recall that

the integral of a pure phase is a delta function:∫
x

e−ikx = 2πδ(k)

∫
k

eikx = δ(x) (3)

We use

f(x)↔F (k) (4)

g(x)↔G(k) (5)

to indicate Fourier transform pairs. a is a postive constant of unit length. b is a positive
constant of unit wavenumber k. ε is a small real constant

(a) (Examples:) Consider the following most useful Fourier transforms that every serious
physicist (experimentalist and theorist) knows by memory:

1

2a
exp(−|x|/a) ↔ 1

1 + (ka)2
(6)

1

a
step(x/a) ↔ sinc(ka) ≡ sin(ka/2)

(ka/2)
(7)

1√
2πa2

exp(−x2/(2a2)) ↔ exp(−1

2
a2k2) (8)

θ(x)e−bx ↔ 1

b+ ik
(9)

Here step(x) = θ(x+ 1/2)− θ(x−1/2) (see the first panel of Fig. 1) is the square wave
function with integral one. Try to think of a way to remember these. For instance the
second one is what comes out of a single slit diffraction of experiment. If you don’t
know how to do these integrals try to fix that. The table can be read either way, with
the replacements k → −x and an additional factor of 2π, e.g.

1

2π

1

1 + (xb)2
↔ 1

2b
e−|k|/b (10)
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In this case b has units 1/length and is the width in k-space.

Prove that the first row of this table holds. Graph exp(−|x|/a) and its Fourier trans-
form for several values of ε, with ε ≡ 1/a, and a → ∞ or ε → 0. Argue that this
Fourier transform is 2π times a Dirac sequence1:

2π

[
1

π

ε

ε2 + k2

]
= 2πδε(k) (11)

Whenever you see a δ-function it must be remembered that it is shorthand for a Dirac
sequence δε(x). The identity ∫

x

e−ikx = 2πδ(k) (12)

is shorthand for a limiting process where the Fourier integral is cutoff in some way.
Here we have explored the cutting it off like this

limε→0

∫
x

eikxe−ε|x| = 2πδε(k) (13)

but it can be cutoff in many ways.

(b) (Real/Imaginary/Even/Odd) Consider the following table:

If . . . then . . .
f(x) is real F (−k) = (F (k))∗

f(x) is imaginary F (−k)− F (k)
f(x) is even (f(−x) = f(x)) F (−k) = F (k) (i.e. F is even)
f(x) is odd (f(−x) = −f(x)) F (−k) = −F (k) (i.e. F is odd
f(x) is real and even F (k) is real and even
f(x) is real and odd F (k) is imaginary and odd
f(x) is imaginary and even F (k) is imaginary and even
f(x) is imaginary and odd F (k) is real and odd

Table 1:

Prove the first line and state what this means for the even and odd properties of the
real and imaginary parts of F (k). Prove the sixth line as well.

(c) (Shifting) Consider the Fourier transform pair f(k) ↔ F (k). We have the following
properties

f(x)eik0x ↔ F (k − k0) wavenumber shifting (14)

f(x− x0) ↔ F (k)e−ikx0 spatial shifting (15)

Prove the first of these.

1A Dirac sequence is any family of functions δε(x), labelled by a parameter ε → 0, which satisfies∫∞
−∞ δε(x) = 1, and approaches zero for |x| 6= 0 and fixed.
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(d) (Scaling) Consider the Fourier transform pair f(k)↔ F (k).

f(xa) ↔ 1

|a|
F (k/a) spatial scaling (16)

1

|b|
f(x/b) ↔ F (bk) wavenumber scaling (17)

Prove the first of these and qualitatively describe the relation to the uncertainty prin-
ciple.

(e) (Derivatives) Show that ∫
x

f(x) = F (k)
∣∣∣
k=0

, (18)

and show more generally that the moments of f(x) are related to to the taylor series
of F (k) at the origin by ∫

x

f(x)(−ix)n =

(
d

dk

)n
F (k)

∣∣∣∣
k=0

(19)

The converse also holds the moments of F (k) are related to the derivatives of f(x) at
the origin ∫

k

F (k)(ik)n =

(
d

dx

)n
f(x)

∣∣∣∣
x=0

(20)

(f) (Analyticity/Asymptotic form) It follows from Eq. (20), that if a function’s Fourier
transform F (k) falls slower than 1/kn, then its n-th derivative will not generically exist.
Generally analytic functions (which have all derivatives) will have a Fourier transform
which decreases exponentially at large k. Consider the Fourier transform of

1

1 + (ka)2
(21)

How does the result corroborate this theorem?

(g) (Convolutions) Consider the convolution of two functions

(g ∗ f)(x) ≡
∫ ∞
−∞

dy g(x− y) f(y) (22)

Usually the convolution is used to provide a transformation or response to the source
function f(y). For instance if g(z) is a normalized narrow gaussian:

g(z) =
1√

2πa2
exp(
−z2

2a2
) (23)

then convolution process, just replaces any function f(x) with a kind of average of all
of its neighboring values. The figure below shows a step-like function f(x) convolved
with a gaussian, g(z).

Most often in physics f(y) is some kind of source and g(x− y) is the Green function,
i.e. the value at x due to a delta-fcn source at position y. For instance if f(y) is the
charge density ρ(y) then convolution of ρ(y) the green function 1/4π|x − y| gives the
electic field at point x.
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(f*g)(x)

(i) Working only in coordinate space show that if
∫
y
g(y) = 1. The integral of f is

unchanged by the convolution process.

(ii) Show that the Fourier transform of the convolution is a product of Fourier trans-
forms.

(g ∗ f)(x)↔ G(k)F (k) (24)

(iii) By working in fourier space, show using the convolution theorem and Eq. (18)
that if

∫
y
g(y) = 1, then the integral of f is unchanged by the convolution process.

(iv) Compute the fourier transform of(
sin(ka/2)

(ka/2)

)2

(25)

by using the convolution theorem. You can check your result from the its integral
in coordinate space.

Describe qualitatively (using the convolution theorem) what are the functions
Bn(x) which are defined by Fourier transform of (sinc(ka))n

Bn(x)↔
(

sin(ka/2)

ka/2

)n
(26)

These functions Bn(x) are known as B splines and are important for numerical
work. Note: the higher the n, the faster it falls in k-space, the smoother the
function. Fig. 1 shows the first couple B splines.

(v) Consider the convolution of a smooth function f(x) with a normalized gaussian
of width a which is small compared to the scales of f(x). By working in k-space,
show that

(f ∗ g)(x) ' f(x) + f ′′(x)
a2

2
(27)

Qualitatively, what does f ′′(x) the term do?
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Figure 1: The first four B-splines, B1 . . . B4, laid out like a two lines of a book. The second
one is continuous but has discontinuous derivatives. The fourth one is the the cubic bspline,
which has continuous second derivatives but discontinuous third derivatives.

(h) (Correlations) Closely related to the convolution of two functions (but usually some-
what distinct in physical situations) is the correlation of two functions:

Corr(f, g)(x) ≡
∫
dy f(x+ y) g∗(y) , (28)

which is is relevant when we want to quantify over what range of lengths, x, a phys-
ical observable f is influenced by value g. Often g is a real function and the star is
unnecessary. Show that the correlation function satisfies

Corr(f, g)↔ F (k)(G(k))∗ Correlation-Theorem (29)

and thus the fourier transform of auto-correlation function is the power spectrum
|F (k)|2

Corr(f, f)↔ |F (k)|2 Wiener-Khinchin Theorem (30)
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For this exercise you will need to recognize that the Fourier transform of g∗(x) (what
I sometimes call G∗(k)) is not quite (G(k))∗.

(i) (Parseval) Finally prove Parsevals theorem∫
dx|f(x)|2 =

∫
dk

2π
|F (k)|2 Parseval’s Theorem (31)

which says that the power can be computed either in coordinate or momentum space.
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