Kepler's Laws

Motion of earth a sun

$$
\left.\left.\begin{array}{rl}
L= & \frac{1}{2} m_{1} \vec{v}_{1}^{2}+\frac{1}{2} m_{2} \vec{v}_{3}^{2}-U(\mid \vec{r} \\
1
\end{array} \vec{r}_{2} \right\rvert\,\right)
$$

- Total momentum is constant. Define

$$
\left.\begin{array}{rl}
m_{\text {TOT }} \vec{R} & =m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2} \\
\vec{r} & =\vec{r}_{1}-\vec{r}_{2}
\end{array}\right\} \quad \begin{aligned}
& \vec{r}_{1}=\vec{R}+\vec{m}_{2} \overrightarrow{m_{\text {TOT }}} \\
& \vec{r}_{2}=\vec{R}-\frac{m_{1}}{m_{\text {TOT }}} \stackrel{\rightharpoonup}{r}
\end{aligned}
$$

- Then Lagrangian reads

$$
L=\frac{1}{2} m_{T O T} \dot{\vec{R}}_{c m}^{2}+\frac{1}{2} \mu \dot{\vec{r}}^{2}-u(r) \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

- Now $\vec{L}=\vec{r} \times \vec{\rho}$ is constant. So, we can choose \vec{r} to lie in the x, y plane, which is perpendicular to \vec{l} which can be taken to be directed along the z-axis

So

$$
\vec{r}=(r \cos \phi, r \sin \phi, 0)
$$

And so negclecting the CM motion, the lagrangian

$$
L=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-u(r)
$$

The Eon means L is independent

$$
\begin{aligned}
& p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\mu r^{2} \dot{\phi}, \text { and is cyclic } \\
& \frac{d}{d t}\left(\mu r^{2} \dot{\phi}\right)=0 \Rightarrow p \phi=\text { constant } \equiv \ell
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\frac{d}{d t}(\mu \dot{r}) & =\mu r \dot{\phi}^{2}-\frac{\partial u}{\partial r}(r)
\end{array}\right) \quad \begin{aligned}
& \text { use definition } \\
& \\
& \\
& =\frac{p_{\phi}^{2}}{\mu r^{3}}-\frac{\partial u}{\partial r} \quad \text { of } p \phi
\end{aligned}
$$ of ϕ

-

Note that one can not find $V_{\text {eff }}(r)$ by replacing $\dot{\phi}$ with $P \phi$ in L. The reason is that $P \phi$ is not held fixed when the Lagrangian is extremized

The EOM in the Hamiltonian setup
Given the Lagrangian

$$
L=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\phi}^{2}-u(r)
$$

- $p_{r}=\frac{\partial L}{\partial \dot{r}}=\mu \dot{r} \quad P_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\mu r^{2} \dot{\phi}$

Then

$$
H=p_{r} \dot{r}+p_{\phi} \dot{\phi}-L, \text { with } \dot{r}=\frac{p_{r}}{\mu}, \dot{\phi}=\frac{p_{\phi}}{\mu r^{2}}
$$

This yields

$$
H=\frac{p_{r}^{2}}{2 \mu}+\frac{p_{\phi}^{2}}{2 \mu r^{2}}+U(r) \quad \text { This is }
$$

The EOM are $>V_{\text {eff }}\left(r, P_{\phi}\right)$

$$
\begin{aligned}
& \dot{r}=\partial H / \partial p_{r}= \frac{p_{r}}{\mu}, \text { and } \dot{\phi}=\frac{p_{\phi}}{\mu r^{2}} \cdot \\
& \cdot \frac{d p_{r}}{d t}=-\frac{\partial H}{\partial r}=-\frac{\partial V_{\text {eff }}}{\partial r}\left(r, p_{\phi}\right) \\
& 0 \frac{d p_{\phi}}{d t}=-\frac{\partial H}{\partial \phi}=0 \Rightarrow p_{\phi}=\text { constant } \\
&=\text { angular momentum } \\
& \text { is constant }
\end{aligned}
$$

Integrating the equation of Motion
Finally this problem has a first integral
Alternatively one could

$$
E=T+V=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\phi}^{2}+u(r)
$$ work with the Hamiltonan,

$$
H=\frac{p_{r}^{2}}{2 \mu}+\left(\frac{p_{\phi}^{2}}{2 \mu r^{2}}+U(r)\right)
$$

$$
\begin{array}{r}
=\frac{1}{2} \mu \dot{r}^{2}+\left(\frac{l^{2}}{2 \mu r^{2}}+U(r)\right) \\
\vdots
\end{array}
$$

- So the problem is essentially ID. Solving for \dot{r}

$$
\frac{d r}{d t}=\sqrt{\frac{2\left(E-V_{\text {eff }}(r)\right)}{\mu}} \Rightarrow d t=\sqrt{\frac{\mu}{2}} \frac{d r}{\sqrt{E-V_{\text {eff }}(r)}}
$$

We find, integrating from t_{0}, r_{0} to t, r

$$
t-t_{0}=\int_{\frac{\mu}{2}}^{1} \int_{r_{0}}^{r} \frac{d r}{\sqrt{E-V_{e f f}(r)}}
$$

- Once r is known we determine ϕ, since:

$$
\frac{d \phi}{d t}=\frac{l}{\mu r^{2}} \Rightarrow d \phi=\frac{l}{\mu r^{2}} d t
$$

Let us express ϕ versus r

Yielding the trajectory r as a fan of ϕ

$$
\phi-\phi_{0}=\frac{l}{\sqrt{2 \mu}} \int^{r} \frac{d r / r^{2}}{\left(E-V_{e f f}(r)\right)^{1 / 2}}
$$

Picture $U(r)=-k / r \quad V_{\text {eff }}(r)=U(r)+\frac{l^{2}}{2 m r^{2}}$
$\left.V_{\text {eff }}^{(r)}\right|_{\frac{\text { Centrifugal barrier } \alpha p_{\phi}^{2}}{\text { E for hyperbolic }}} ^{\frac{e^{E l l i p t i c ~ o r b i t}}{\alpha \frac{1}{r}}}$

- Of course we haven't shown yet that the open orbits are hyperbolas and the closed orbits are hyperbolas. We will do this shortly
N.B. The Langrangian US Hamiltonian given the Lagrangian

$$
L=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\phi}^{2}-u(r) \quad P_{\phi}=\mu r^{2} \dot{\phi}
$$

it would be a mistake to substitute p_{ϕ} into L and use it to determine the EOM of r. You have to find the Em first, and then substitute $\dot{\phi}=p_{\phi} / \mu r^{2}$

The "problem" is that P_{ϕ} is not held fixed, but rather $\dot{\phi}$ is held fixed, when finding the EOM in the Lagrangian Setup.

- Of course one could use the Hamiltonian (or Routhan --see homework) where P_{ϕ} is fixed

$$
H=\frac{p_{r}^{2}}{2 \mu}+(\underbrace{\frac{p_{\phi}^{2}}{2 \mu r^{2}}+u(r)}_{=V_{\text {eff }}})
$$

- Then the effecitive potential comes:

$$
\frac{d r}{d t}=\frac{p r}{\mu} \quad \frac{d p r}{d t}=-\frac{\partial V_{e f f}}{\partial r}
$$

