Rotations and angular momentum
The Lagrangian

$$
L=\frac{1}{2} m_{1} \dot{\vec{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\vec{r}}^{2}-U\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
$$

- If I rotate the coordinates by a small amount, the $\left|\vec{r}_{1}-\vec{r}_{2}\right|$ is unchanged. So,

- So the conserved quanity is

$$
\begin{array}{rll}
Q & =\sum_{a} \vec{p}_{a} \cdot \delta_{s} \vec{r} & \text { Identity } \\
& =\sum_{a} \vec{p}_{a} \cdot \delta \stackrel{\rightharpoonup}{\theta} \times \vec{r}_{a} \\
& =\sum_{a} \delta \stackrel{\rightharpoonup}{\theta} \cdot\left(\vec{r}_{a} \times \vec{p}_{a}\right) & \vec{a} \cdot \vec{b} \times c)=\vec{b} \cdot(\vec{c} \times \vec{a}) \\
Q & =\delta \vec{\theta} \cdot \sum_{a} \vec{r}_{a} \times \vec{p}_{a} &
\end{array}
$$

Since $\delta \vec{\theta}$ was arbitrary we Lave a conserved vector

$$
\vec{L}=\sum_{a} \vec{r}_{a} \times \vec{p}_{a}
$$

Energy Conservation and Homogeneity in Time

- We need a slight generalization of the Noether theorem. Previously we required that the Lagrangian be unchanged by the transformation

$$
\frac{\vec{r}_{a} \longrightarrow \vec{r}_{a}+\delta \stackrel{\rightharpoonup}{r}_{a}}{r^{2}}
$$

- But we know that if a Loigrangian L^{\prime} differs from L by a total derivative $d K / d t$ then L^{\prime} and L will give the same EOM. So we will still consider it a symmetry if under the transformation

$$
L \longrightarrow L+\frac{d L}{d t}
$$

- Then

$$
\delta S\left[r, \delta_{s} r\right]=\int_{t_{1}}^{t_{2}} d t \frac{d K}{d t}=\left.K\right|_{t_{1}} ^{t_{2}}=k\left(t_{2}\right)-k\left(t_{1}\right)
$$

Then a general onshell variation gives

$$
\delta S\left[\vec{r}_{-}, \delta \vec{r}\right]=\left.\vec{p}_{a} \cdot \delta_{S} \vec{r}_{a}\right|_{t_{1}} ^{t_{2}}
$$

This has a misprint should read $\vec{p}_{a} \cdot \delta \vec{r}_{a}$

- Combining and A by restricting the variation to $\delta_{S} r$ and setting the \vec{r} onshell (i.e. demanding that \vec{r} obeys the Euler-Lagrange EOM) yields a conservation Law

Where

$$
Q=\sum_{a} \vec{P}_{a} \cdot \delta_{s} \vec{r}_{a}-K
$$

- This gets used for energy conservation. Consider a path that gets shifted in time by an amount ε

Under a shift $q^{\prime}(t)=q(t-\epsilon)$. The action $\int_{t_{1}}^{t_{2}} L$ is changed, but only by the contribution at the ends. The red part moves into the interval $\left[t_{1}, t_{2}\right]$ and the blue part moves out of the interval. The $K\left(t_{2}\right)$ and $K\left(t_{1}\right)$ records this change

- Now the new lagrangian is

$$
\begin{array}{rlr}
L^{\prime}(t) & =L(t-\varepsilon) & K=-\varepsilon L \\
& =L(t)-\varepsilon \frac{d L}{d t} \text { or } L \rightarrow L \stackrel{-\varepsilon \frac{d L}{d t}}{\longrightarrow}
\end{array}
$$

The new coordinates are

$$
\begin{array}{rlr}
\vec{r}^{\prime}(t) & =r(t-\varepsilon) & \delta_{s} \vec{r}=-\varepsilon \vec{r} \\
& =\vec{r}-\varepsilon \frac{d \vec{r}}{d t} \text { or } \vec{r} \rightarrow \vec{r}-\varepsilon \frac{d \vec{r}}{d t}
\end{array}
$$

- So the conserved quantity is

$$
\begin{aligned}
& Q=\sum_{a} p_{a} \cdot(-\varepsilon \dot{\vec{r}})-(-\varepsilon L), \quad \text { or } \\
& Q=-\varepsilon h \quad \text { with } h=\sum_{a} p_{a} \dot{\vec{r}}_{a}-L
\end{aligned}
$$

The minus sign is immaterial as is the constant ε, so

$$
h=\vec{p}_{a} \cdot \delta \vec{r}_{a}-L \text { is constant }
$$

Homogeneity in time implies energy Conservation

