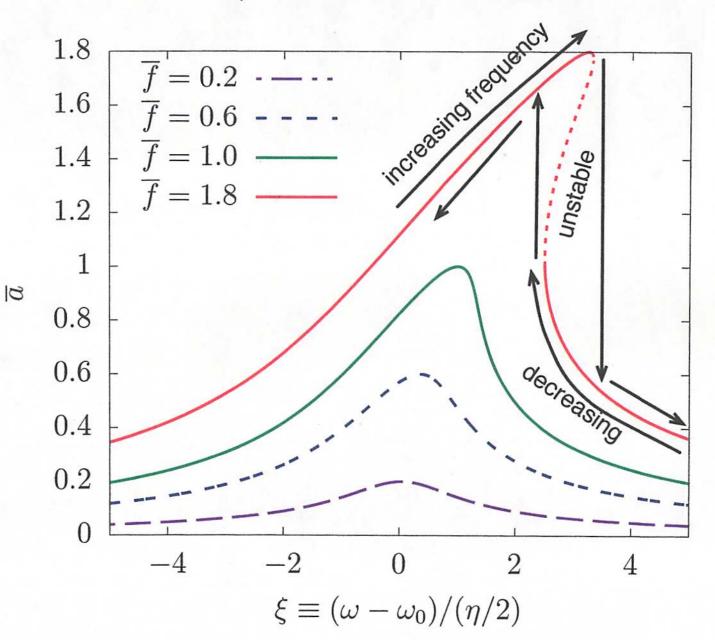
Non-Linear Oscillations Near Resonance
• First consider a damped driven oscillator
near resonance

$$x + yx + w_0^2 x = f_0 \cos wt \qquad y small
m$$
• Substituting
 $x = a \cos(-wt + \psi)$ $\psi = -wt + \psi$
We find w_0^2
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_1 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi = f_2 \cos \psi$
 $(-w^2 + w_0^2) a \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-w^2 + w_1 \sin \psi = f_2 \cos \psi$
 $(-$

As is familier width & y/2 w W • The width is ~7/2. The Q of the Oscillator is Q= wo/m · The maximum values is a max = fo / mwoy Non-linearities shift the frequency; $\Delta W = \frac{3}{8} \frac{\beta a^2}{\omega_0} = \frac{\beta (a^2)}{\kappa} = \frac{3}{8} \frac{\beta (w_0)}{\omega_0}$ · So non-linearities will distort the line shape when AW~ 1/2 or 1/2~ Kamax $\frac{1 - K}{(\eta/2) (m w_{og})^2} \sim Thus ||we'|will$ Or and non-linearities are ipaportant for f~1

So the amplitude is new satisfying

$$a^{2} = \left(\frac{f}{(2mw_{0})}\right)^{2} + \left(\frac{f}{(2mw_{0})}\right)^{2} + \left(\frac{f}{(2mw_{0})}\right)^{2} + \left(\frac{f}{(2mw_{0})}\right)^{2} + \left(\frac{f}{(2mw_{0})}\right)^{2} + \left(\frac{f}{(2mw_{0})}\right)^{2}$$
This is a cubic equation for a^{2} which reads
 $a^{2} (w - w_{0} - Ka^{2})^{2} + \left(\frac{f}{(2mw_{0})}\right)^{2} = \left(\frac{f}{(2mw_{0})}\right)^{2}$
By appropriate units $\frac{f}{(2mw_{0})}$ ($\frac{f}{(2mw_{0})}\right)^{2}$
By appropriate units $\frac{f}{(2mw_{0})}$ ($\frac{f}{(2mw_{0})}\right)^{2}$
By appropriate units $\frac{f}{(2mw_{0})}$ ($\frac{f}{(2mw_{0})}\right)^{2}$
 $a^{2} = \left(\frac{K}{(2mw_{0})}\right)^{2} + \frac{f}{(2mw_{0})}\left(\frac{f}{(2mw_{0})}\right)^{2}$
 $a^{2} = \left(\frac{K}{(2mw_{0})}\right)^{2} + \frac{f}{(2mw_{0})}\left(\frac{f}{(2mw_{0})}\right)^{$



Amplitude of non-linear oscillation

See Picture For small f <<1, the amplitude is small and the line shape is a simple Lorentzian $\overline{a^2} = \overline{f^2}$ $\overline{f^2} + 1$ There is only one real root of the cubic Equation For larger f the line shape is distorted. For F 21 there are three real roots causing the curve to bend over In the "bend-over" case as the frequency is increased, the amplitude will follow the upper branch to the tip. It will then jump to the lower branch (The middle branch is unstable -- not shown) and follow the lower branch. If the frequency is subsequently decreased the system will follow the lower branch until jumping to the upper branch at the lower tip.