Classification of modes using symmetry

The problem is cleary symmetric under reflections. As a result of this symmetry the normal modes will either be even or odd under reflection.

- For each deformation $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ there is a reflected deformation \vec{x}

$$
\left(x_{1}, x_{2}, x_{3}\right) \longrightarrow\left(\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right)=\left(-x_{3},-x_{2},-x_{1}\right)
$$

hus $\vec{e}_{1}=(1,0,0) \longrightarrow \vec{e}_{1} \equiv(-1,0,0)$ as shown in A above

- We say a mode is even if

$$
\left(\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)
$$

And odd if

$$
\left(\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right)=-\left(x_{1}, x_{2}, x_{3}\right)
$$

- It is advisable to use coordinates which reflect the symmetries of the problem. For instance the only even mode is parametrized by the coordinate que

$$
\left(x_{1}, x_{2}, x_{3}\right)_{\text {even }}=q_{e^{(-1,0,1)}}
$$

even
q_{e} uncoupled from other coords
Since the space of even deformations is one dimensional, it must be a normal mode, it cant "mix" with other odd modes Since the problem is symmetric

- The odd modes are parametrized by two coordinates q_{2} and q_{3}

$$
\left(x_{1}, x_{2}, x_{3}\right)_{\text {odd }}=\left(q_{3}, q_{2}, q_{3}\right)
$$

The coordinates q_{2} and q_{3} will be coupled, but uncoupled with ge.

- Finally the zero modes are easy to guess and correspond to shifts in the center of mass

$$
\vec{x}_{0}=q_{c m}(1,1,1)
$$

this is odd
We want $q \mathrm{~cm}$ as one of our coordinates and require that the remaining odd modes be orthogonal to this (with- respect to the weighted inner product)

$$
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{llll}
m & & & \\
& M & \\
& & m
\end{array}\right)\left(\begin{array}{l}
q_{3} \\
q_{2} \\
q_{3}
\end{array}\right)=0
$$

Gives:

$$
m q_{3}+M q_{2}+m q_{3}=0
$$

- This is the requirement that the odd deformation does not change the center of mass
- This means we should have parametrized the odd deformations by $q_{o}, q_{c m}$ instead of q_{2}, q_{3}

$$
\left(q_{3}, q_{2}, q_{3}\right)=q_{0}\left(1,-\frac{2 m}{M}, 1\right)+q_{c m}(1,1,1)
$$

this is the only odd non-zero and must therefore be an eigenvector,

- So if we had parametrized the oscillations by coordinates $q_{e}, q_{0}, q_{c m}$:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}\right)= & q_{e}(t)(1,0,1) \\
& +q_{0}(t)\left(1,-\frac{2 m}{M}, 1\right) \\
& +q_{c m}(t)(1,1,1)
\end{aligned}
$$

We would have found an uncoupled oscillations problem. Here we could find all eigenmodes with symmetry and orthogonality to zero modes. In general symmetry will only reduce the number of coupled coordinates, and simplify the problem.

