Oscillations and Normal Modes

Let us consider the Lagrangian:

$$
L=\frac{1}{2} m_{i, j}(q) \dot{q}^{i} \dot{q}^{j}-u(q)
$$

Expand the potential near a minimum

$$
q^{i}=q_{0}^{i}+x^{i}
$$

K small. not necessarily cartesian.
So

$$
L=\frac{1}{2} m_{i j} \dot{x}^{i} \dot{x}^{j}-\frac{1}{2} k_{i j} x^{i} x^{j}
$$ spring constr.

Where the matrices $m_{i j}$ and $k_{i j}$ are evaluated at q_{0}

The equation of motion is

$$
m_{i j} \ddot{x}^{j}=-k_{i j} x^{\dot{j}}
$$

The way we can solve this is to try a solution (this describes an oscillation with one frequency, i.e. a normal mode)

$$
x^{j}(t)=E^{j} e^{-i \omega t}
$$

${ }^{\wedge}$ constant vector (it will be real)
So this becomes

$$
k_{i j} E^{j}=w^{2} m_{i j} E^{j}
$$

- So with a matrix notation

$$
K=\left(\begin{array}{ll}
k_{i, j}
\end{array}\right) \quad M=\left(m_{i j}\right) \quad \vec{E} \equiv\left(E^{j}\right)
$$

we have

$$
K \text { positive definite real }
$$

This is a (generalized) eigenvalue problem for the eigenvectors \vec{E} and the eigen values ω^{2}.

We will describe this e-value problem in the next section. Here we procede with a simple method that always works:
$\star\left(\mathbb{K}-\omega^{2} \mathbb{M}\right) \vec{E}=0$
This has non-trivial solutions ($\vec{E} \neq 0$) only when

$$
\operatorname{det}\left(\mathbb{K}-\omega^{2} \mathbb{M}\right)=0
$$

This characteristic polynomial has roots

$$
\lambda_{a}=\omega_{a}^{2} \text { with } a=1 \ldots N
$$

Once you know λ_{a} you can substitute into A, , and determine the eigenvector for each a, \vec{E}_{a}^{\prime} with $a=1 \ldots \mathrm{~N}$

- The general solution is an expansion

$$
x^{j}(t)=\sum_{a} C_{+}^{a} E_{a}^{j} e^{-i \omega_{a} t}+C_{-}^{\alpha} E_{a}^{j} e^{+i \omega_{\alpha} t}
$$

general solution
Now you should adjust the coefficients C_{+}^{a} and C_{-}^{a} to reproduce the initial conditions for x : $x^{j}(0)$ and $\dot{x}^{j}(0)$

The Generalized E-value Problem

More common and basically the same as the ordinary E-value problem

$$
A \cdot \stackrel{\rightharpoonup}{E}=\lambda W \vec{E}
$$

 matrix
real positive definite weight matrix. M in our case.

To find λ just do the usual thing:

$$
\text { deft }(A-\lambda W)=0 \leftarrow \text { solve }
$$

- Let A be a hermitian matrix
(1) The eigenvalues are real
(2) The eigenvectors are orthogonal with W as a weight

$$
\begin{aligned}
& (\vec{x}, \stackrel{\rightharpoonup}{y})=x^{* i} Y^{j} \leftarrow \text { Inner product } \\
& (\vec{x}, w \vec{y})=x^{* i} W_{i \dot{y}} x^{j} \leftarrow \text { Weighted inner } \\
& \text { product. }
\end{aligned}
$$

So, we mean:

$$
\left(E_{a}, W E_{b}\right) \equiv E_{a}^{* i} W_{i y} E_{b}^{j} \equiv E_{a}^{+} W E_{b}=\delta_{a b}
$$

Inner product of two E-vectors with a weight matrix W.

Proof

- Reality real, W is real and symmetric

$$
(\vec{E}, A \vec{E})=\lambda(\vec{E}, W \vec{E})
$$

But, $(E, A E)=(A E, E)=(E, A E)^{*}=$ real A self-adyout (hermitian) matrix
So \& can be satisfied for λ real

- Orthogonality: use $A E=\lambda W$

So $\left(E_{2}, A E_{1}\right)=\lambda_{1}\left(E_{2}, W E_{1}\right)$
And $\left(E_{1}, A E_{2}\right)^{*}=\lambda_{2}\left(E_{1}, W E_{2}\right)^{*}$
Then using $\left(E_{1}, A E_{2}\right)^{*}=\left(E_{2}, A E_{1}\right)$ and $\left(E_{1}, W E_{2}\right)^{*}=\left(E_{2}, W E_{1}\right)$, and subtracting
yield's

$$
0=\left(\lambda_{1}-\lambda_{2}\right)\left\langle E_{2}, W E_{1}\right)
$$

So for $\lambda_{1} \ngtr \lambda_{2}$

$$
O=\left(E_{2}, W E_{1}\right)
$$

Return to Mechanics

Let us express our Lagrangian in terms of the Eigenvector Coordinate System:

$$
\begin{aligned}
& x^{j}(t)=\sum_{a} E_{a}^{j} X^{a}(t) \quad K \cdot \vec{E}_{a}=w_{a}^{2} m \vec{E}_{a}^{\text {e-value! }} \\
& (t)=\left(E_{1}\right) X^{\prime}(t)+\left(E_{2}\right) X^{2}(t)+\cdots a s s \text { matry } \\
& \text { is weight }
\end{aligned}
$$

dr

- We can determine $X^{a}(t)$ using the or thogonality of the E_{a}

$$
x^{a}=\left(E_{a}, M x(t)\right)=E_{a}^{i} m_{1, j} x^{j}(t)
$$

We used

$$
\left(E_{a}, M E_{b}\right)=\delta \cdot{ }_{b}
$$

- The potential energy is

$$
\begin{aligned}
& U=\frac{1}{2} k_{i, j} X^{i} x^{y}=\frac{1}{2} \sum_{a b} X^{a} X^{b} E_{a}^{i} K_{i y} E_{b}^{j} \quad \sum \text { e-value } \\
& =\frac{1}{2} \sum_{a b} X^{a} X^{b} \underbrace{E_{a}^{i} \omega_{b}^{2} m_{i j} E_{b}^{j}}_{\omega_{b}^{2} \delta_{a b}} \\
& =\frac{1}{2} \sum_{a} \omega_{a}^{2} X^{a} X^{a}
\end{aligned}
$$

- The Kinetic energy is similar:

$$
\begin{aligned}
\frac{1}{2} m_{i j} \dot{x}^{i} \dot{x}^{j} & =\frac{1}{2} \sum_{a b} \dot{x}^{a} \dot{x}^{b} \underbrace{E_{a}^{i} m_{1 \dot{j}} E_{b}^{\dot{j}}}_{\delta_{a b}} \\
& =\frac{1}{2} \sum_{a}\left(\dot{x}^{a}\right)^{2}
\end{aligned}
$$

- So the Langrian is

$$
L=\sum_{a} \frac{1}{2} \dot{X}_{a}^{2}-\omega_{a}^{2} X_{a}^{2}
$$

this is independent oscillators with natural frequencies ω_{a}

