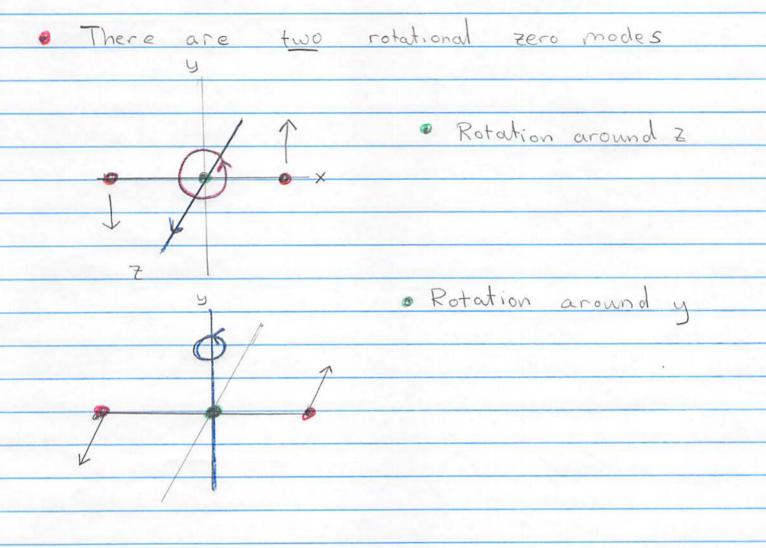
Vibrations of Molecules
For example,
l J=ros Take a linear molecule in 30.
The masses are ma the
m, m2 m3=m, coordinates are:
n n
$m M m = r_{\alpha} + Sr_{\alpha}$
This is a 9-dimensional space: X = (Sr, Sr, Sr, Sr3)
3.3 = 9 Variables and normal modes
But there are three translational zero modes
Translation in x y 7
$\vec{E}_o \propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown)
$E_0 \propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be
$\vec{E}_0 \propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to \vec{E}_0 . As in the previous example
$Eo \propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to E_o . As in the previous example this is equivalent to requiring that the
Eo $\propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to Eo. As in the previous example this is equivalent to requiring that the non-zero modes should have no net momentum
Eo $\propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to Eo. As in the previous example this is equivalent to requiring that the non-zero modes should have no net momentum
$Eo \propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to E_o . As in the previous example this is equivalent to requiring that the
$E_0 \propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be or thogonal to E_0 . As in the previous example this is equivalent to requiring that the non-zero modes should have no net momentum $\sum_{\alpha} m_{\alpha} S_{\alpha} = 0$ or $\sum_{\alpha} m_{\alpha} S_{\alpha} = 0$
Eo $\propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to \vec{E}_0 . As in the previous example this is equivalent to requiring that the non-zero modes should have no net momentum $\sum_{\alpha} m_{\alpha} S_{\alpha} = 0 \text{ or } \sum_{\alpha} m_{\alpha} S_{\alpha} = 0$ • See proof at end See proof at end
Eo $\propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be or thogonal to \vec{E}_0 . As in the previous example this is equivalent to requiring that the non-zero modes should have no net momentum $\sum_{\alpha} m_{\alpha} S \vec{r}_{\alpha} = 0 \text{ or } \sum_{\alpha} m_{\alpha} S \vec{r}_{\alpha} = 0$ See proof at end for angular momentum the center of mass
Eo $\propto (\hat{\chi}, \hat{\chi}, \hat{\chi})$ (x shown) The remaining non-zero modes should be orthogonal to \vec{E}_0 . As in the previous example this is equivalent to requiring that the non-zero modes should have no net momentum $\sum_{\alpha} m_{\alpha} S_{\alpha} = 0 \text{ or } \sum_{\alpha} m_{\alpha} S_{\alpha} = 0$ • See proof at end See proof at end

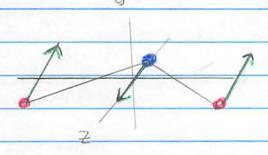


Mormally there would be a third zero mode corresponding to rotations about the x-axis. But here since the molecule is linear, rotations around the x-axis do not displace the atoms and there is no zero-mode associated with the x-rotation

The total # of non-Zero modes is

The non-zero modes should be orthogonal
to the rotational zero modes. Similarly
to the momentum conservation case this
is equivalent to the statement that non-zero
modes should have no angular momentum
Ima (roax Sra) = 0
a
You should convince yourself of this. See
proof at end.
Mow lets consider the bending in the
y-direction
There are three y-words
9, 9, 9,
But the y-momentum
and the angular momentum in the z-direction
(out of the page) should be zero so
my + My + my = 0 (No Py)
1 12 13
and lmy, -lmy=0 (No L2)
33
So the third mode must have a "bending"
mode
$(y_1, y_2, y_3) \propto (1, -2m/M, -1)$
Y

Finally there is another bending mode (with the same frequency as the y-bend)
in the z-direction

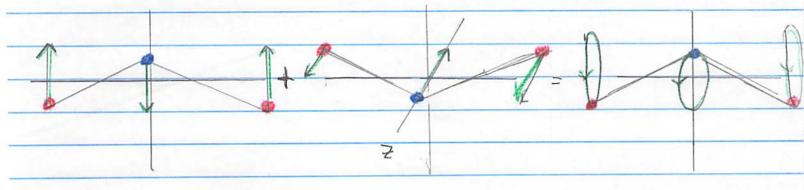


Summary

9 modes = 3-trans zero + 2-rot zero

+ 2 vibration in x + 2 bendings in y and Z

Finally the two bending modes have the same frequency and can be combinded into a whirling mode:



See video (click me!)

Proof

This is a proof of the statement on page 3 that requiring that non-zero modes are orthogonal to the rotational zero modes means that the non-zero modes will have no net angular momentum. A similar statement was mage on page 1 regarding the momentum.

Consider a rotation around 7: E = (SOXT, SOXT, SOXT) this is a zero mode; for a generic displacement: $Y = (S\vec{r}, S\vec{r}, S\vec{r})$ Requiring orthogonality means use (E, MY) = I ma(Sex Fox) - SF = 07 = I ma (roa x 8 ra) · SO = 0 1 Or since 80 is arbitrary: $\sum_{\alpha} m_{\alpha} (\vec{r} \times S\vec{r}_{\alpha}) = 0$ so, The angular momentum carried by the

non-zero modes is Zero: