Dynamics and The Euler Equations • Now we are ready to determine the EOM of the rigid body. The motion of the CM is given by dP cm = Fext dt This determines P cm and V cm and then we can integrate I to determine X cm Somewhat analogously, the equation of motion for the angles of the rigid body is $dL = \overline{T}_{ext}$ $\overline{T}_{ext} = \sum_{\alpha} \overline{F}_{\alpha} \times \overline{F}_{ext,\alpha}$ where i external is the sum of the external torques on the body. This determines I and W and then the angular orientation of the body. · Let us neglect external forces, to study the free motion of a rigid body $(d\vec{L}) = (d\vec{L}) + \vec{w} \times \vec{L}$ describes the change in \vec{e}_a tinae derivative of I assuming the Ea(t) are constant

• Nore explicitly (by way of review) for
$$\vec{L} = L^{\alpha}\vec{e}_{\alpha}$$

 $d\vec{L} = (dL^{\alpha} \vec{e}_{\alpha}) + (L^{\alpha} d\vec{e}_{\alpha}) \leftarrow \text{this is with}$
 $d\vec{L} = dL^{\alpha} \vec{e}_{\alpha} + L^{\alpha} \vec{w}_{\alpha} \cdot \vec{e}_{b}$
 $d\vec{L} = dL^{\alpha} \vec{e}_{\alpha} + L^{\alpha} \vec{w}_{\alpha} \cdot \vec{e}_{b}$
 $= dL_{\alpha} \vec{e}_{\alpha} + L^{\alpha} \vec{w}_{\alpha} \cdot \vec{e}_{b}$
 $= dL_{\alpha} \vec{e}_{\alpha} + L^{\alpha} \vec{w}_{\alpha} \cdot \vec{e}_{b}$
 dt
• After shuffling indices, the EOM for $\vec{t}_{ext} = 0$
 \vec{t}
 $dL_{\alpha} + \epsilon_{\alpha}bc \cdot w^{b}L^{c} = (\vec{T}_{ext})^{\alpha} \quad free motion$
 dt
 $dL_{\alpha} + \epsilon_{\alpha}bc \cdot w^{b}L^{c} = (\vec{T}_{ext})^{\alpha} \quad free motion$
 dt
 $dL_{\alpha} + \epsilon_{\alpha}bc \cdot w^{b}L^{c} = (\vec{T}_{ext})^{\alpha} \quad free motion$
 dt
 $dL_{\alpha} + \epsilon_{\alpha}bc \cdot w^{b}L^{c} = (\vec{T}_{ext})^{\alpha} \quad free motion$
 dt
 $dL_{\alpha} + \epsilon_{\alpha}bc \cdot w^{b}L^{c} = (\vec{T}_{ext})^{\alpha} \quad free motion$
 dt
 $L_{\alpha} = I_{1}w_{1} \quad L_{2} = I_{2}w_{2} \quad L_{3} = I_{3}w_{3}$
Then writing out $\epsilon_{\alpha} \neq w^{c}$ find the Euler
 $equations$
 $I_{1} \quad dw_{2} = w_{2}w_{3} (I_{2} - I_{3})$
 dt
 dt
 dt
 dt
 dt
 dt

First watch the experiment (click me!)
 Notice that the plate wobbles, and the direction of the tilt turns in time

•	Next	watch	the	slow	motion	simulation	
				(click	me. And fin	nd the .mov file)	
	+=0					,	

• The red arrow shows the direction of the maximum tilt, and how it turns in time. The rate of turn, is called ϕ , the precession rate.

 $t = \Delta t$

 In each time moment the plate spins around the tilt axis with rate ω_T , I called ω_T the wobble rate

 Of course it also spins
 around its ~ z axis. This is wy, the spin rate

The free Symmetric Top

Ø	Take a plate and send it spinning
	Take a plate and send it spinning in the air. Inspection shows that
	in addition to spinning it wobbles
	in addition to spinning it wobbles (watch video). We should predict this
	the Nublic rates
0	
	Euler wrote down his equations to predict the Wobbling of the earth
	4
0	We will first study a "symmetric top"
	We will first study a "symmetric top" which is a rigid body with
	moment of inertials
	$I_1 = I_2 \neq I_3$
ø	We will study the spinning plate where
	· · · · · · · · · · · · · · · · · · ·
	$I_1 = I_2 = I_3 = 1 MR^2 I_3 = 1 MR^2$ $I_2 = 4 Z^2$
	2 4 2
Ø	Then the Euler equations become (I2=I,)
	$I, \tilde{w}, = w_2 w_3 (I, -I_3)$
	$I_1 \tilde{w}_2 = w_3 w_1 (I_3 - I_1)$
	٥
	$I_3 \tilde{\omega}_3 = 0$

• Examining the equations we see

$$w_2 = Const$$

• And w_1 and w_2 satisfy precession general
 $w_1 = -w_2 \Omega$ with $\Omega \equiv w_2 (I_2 - I_1)$
 $w_2 = +w_1 \Omega$
• Now these equations are easily where $I_2 = 2I_1$
solved;
 $w_T = (w_{1,1} w_2) = w_T(sin\Omega t, cos\Omega t)$ of w_T
with w_T a constant (w -transverse to $2'$)
 $e_3 = Z$ w_T
 w_1
 $w_2 = -Z$ w_T
 w_2
 w_3 w_4
 w_5
 w_7
 $w_7 = (w_{1,1} w_2) = w_T(sin\Omega t, cos\Omega t)$ of w_T
 w_7
 w_7

• The angular Momentum lies between $\vec{\omega}$ and $\vec{\omega}_3$, since $I_1 = I_2 = \frac{1}{2}I_3$ $\vec{L} = I_1 \cdot \omega_1 \cdot \vec{e}_1 + I_2 \cdot \omega_2 \cdot \vec{e}_2 + I_3 \cdot \omega_3 \cdot \vec{e}_3$ $= I_1 \cdot (\omega_1 \cdot \vec{e}_1 + \omega_2 \cdot \vec{e}_2) + I_3 \cdot \vec{\omega}_3$ $= \vec{\omega}_T$ And so: $\vec{L} = I \cdot \vec{\omega}_T + \vec{\omega}_3$ $\vec{u}_3 = \vec{\omega}_T + \vec{\omega}_3$

· Comments

\mathcal{O}	The fact that \tilde{w}_{T} is non zero means	the
	plate will wobble as it spins. ω_{τ} , what we mean by the wobble rate	

2) In the body frame \vec{w}_r precesses with rate Ω . In the Lab frame \vec{L} is constant and can be taken as the \vec{Z} axis

(3) We will derive it formally next, but intuitively in each time moment At the disk rotates by w_3 st, and the tilt angle (the direction of \tilde{w}_{γ}) advances by SL at relative to this so the tilt has advanced by $\Delta \phi = (w_3 + SL) \Delta t$, i.e.

 $\phi \simeq \omega_3 + \Omega = 2\omega_3$ for disk

See picture! (next page)

body frame

lab frame

· We have worked out the angular velocity wx, wy, wz now we should relate these to the Euler angles $\Theta, \phi, \Psi.$

Since L is constant we orient it along the fixed Z axis. Then the \tilde{e}_3 principal axis (the axle of the plate) is directed along Z

The angle between e, and e, (Z and Z)
 is @ and this is constant in time

 $\vec{w}_{3} \cdot \vec{L} = \vec{w}_{3} L \cos\theta = const$

So 0=0

• Now recall the relation between the
Euler angles and
$$\vec{w}$$

$$Z = \frac{\vec{v}}{\vec{v}} = \frac{\vec{v}}{\vec{v}} = -\Sigma$$

$$Z = -\frac{\vec{v}}{\vec{v}} = -\Sigma$$