Dynamics 'and The Euler Equations

- Now we are ready to determine the EOM of the rigid body. The motion of the cm is given by

$$
\frac{d \vec{P}_{c m}}{d t}=\vec{F}_{e x t}
$$

This determines $\vec{P}_{c m}$ and $\vec{V}_{c m}$ and then we can integrate $\overrightarrow{\mathrm{cm}}_{\mathrm{cm}}$ to determine $\vec{X}_{c m}$

- Somewhat analogously, the equation of motion for the angles of the rigid body is

$$
\left.\frac{d \vec{L}}{d t}=\vec{\tau}_{e x t} \right\rvert\, \quad \vec{\tau}_{e x t}=\sum_{a} \vec{r}_{a x} \vec{F}_{e x t, a}
$$

where \vec{t} external is the sum of the external torques on the body. This determines \vec{L} and $\vec{\omega}$, and then the angular orientation of the body. Let us neglect external forces, to study the free motion of a rigid body

$$
\begin{array}{r}
\left(\frac{d \vec{L}}{d t}\right)_{\text {Lab }}=\left(\frac{d \vec{L}}{d t}\right)_{r}+\vec{\omega} \times \vec{L} \leftarrow \text { describes the } \\
\text { change in } \vec{e}_{a} \\
\text { a } \\
\text { +inge derivative of } \vec{L} \\
\\
\quad \text { assuming the } \vec{e}_{a}(t) \text { are } \\
\\
\text { constant }
\end{array}
$$

- Nore explicity (by way of review) for $\vec{L}=L^{a} \vec{e}_{a}$

$$
\begin{aligned}
\frac{d \vec{L}}{d t} & =\left(\frac{d L^{a}}{d t} \vec{e}_{a}\right)+\left(L^{a} \frac{d \vec{e}_{a}}{d t}\right) \leftarrow \text { this is } \vec{\omega} \times \vec{L} \\
\frac{d \vec{L}}{d t} & =\frac{d L^{a}}{d t} \vec{e}_{a}+L^{a} \hat{\omega}_{a b} \vec{e}_{b} \\
& =\frac{d L_{a}}{d t} \vec{e}_{a}+\underline{\varepsilon_{c a b}} \omega^{c} L^{a} \vec{e}_{b}
\end{aligned}
$$

- After shuffling indices, the EOM for $\vec{\tau}_{\text {ext }}=0$

$$
\begin{array}{ll}
\frac{d L a}{d t}+\varepsilon_{a b c} w^{b} L^{c}=(\vec{\tau} \overbrace{e x t}^{0} & \text { free motion } \\
& \vec{\tau}_{e x t}=0
\end{array}
$$

Now we will work with the principal axes:

$$
L_{1}=I_{1} w_{1} \quad L_{2}=I_{2} \omega_{2} \quad L_{3}=I_{3} \omega_{3}
$$

Then writing out Eq we find the Euler equations

$$
\begin{aligned}
& I_{1} \frac{d w_{1}}{d t}=\omega_{2} w_{3}\left(I_{2}-I_{3}\right) \\
& I_{2} \frac{d w_{2}}{d t}=\omega_{3} w_{1}\left(I_{3}-I_{1}\right) \\
& I_{3} \frac{d w_{3}}{d t}=\omega_{1} w_{2}\left(I_{1}-I_{2}\right)
\end{aligned}
$$

Euler Equations for free motion

Spinning Plate Intro

- First watch the experiment (clic kme!)

Notice that the plate wobbles, and the direction of the tilt turns in time

- Next watch the slow motion simulation

$$
t=0
$$

$$
t=\Delta t
$$

(click me. And find the .move file)

- The red arrow shows the direction of the maximum tilt, and how it turns in time. The rate of turn, is called $\dot{\phi}$, the precession rate.
- In each time moment the plate spins around the tilt axis with rate ω_{T}, I called ω_{T} the wobble rate
- Of course it also spins around its ${ }_{n} \wedge z$ axis. This is ω_{3}, the spin rate

The free symmetric Top
Take a plate and send it spinning in the air. Inspection shows that in addition to spinning, it wobbles (watch video). We should predict this

- Euler wrote down his equations to predict the Wobbling of the earth
- We will first study a "symmetric top" which is a rigid body with moment of inertial

$$
I_{1}=I_{2} \neq I_{3}
$$

We will study the spinning plate where

$$
I_{1}=I_{2}=\frac{I_{3}}{2}=\frac{1}{4} M R^{2} \quad I_{3}=\frac{1}{2} M R^{2}
$$

Then the Euler equations become $\left(I_{2}=I_{1}\right)$

$$
\begin{aligned}
& I_{1} \dot{w}_{1}=w_{2} w_{3}\left(I_{1}-I_{3}\right) \\
& I_{1} \dot{w}_{2}=w_{3} w_{1}\left(I_{3}-I_{1}\right) \\
& I_{3} \dot{w}_{3}=0
\end{aligned}
$$

(0) Examing the equations we see

$$
\omega_{3}=\text { Const }
$$

- And w_{1} and w_{2} satisfy

$$
\begin{aligned}
& \dot{\omega}_{1}=-\omega_{2} \Omega \\
& \dot{\omega}_{2}=+\omega_{1} \Omega
\end{aligned}
$$

- Now these equations are easily
 solved:

$$
\vec{\omega}_{T}=\left(\omega_{1}, \omega_{2}\right)=\omega_{T}(-\sin \Omega t, \cos \Omega t) \left\lvert\, \begin{gathered}
\text { precession } \\
\text { of } \vec{\omega}_{T}
\end{gathered}\right.
$$

with ω_{T} a constant (w-transverse to z^{\prime})

The vector $\vec{\omega}$ and $\vec{\omega}_{T}$ circles (precesses) around the z-axis, at a rate $|\Omega|=w_{3}$.

See picture and video (chic kme)

- The angular momentum lies between $\vec{\omega}$ and $\vec{\omega}_{3}$, since $I_{1}=I_{2}=1 / 2 I_{3}$

$$
\begin{aligned}
\vec{L} & =I_{1} \omega_{1} \stackrel{\rightharpoonup}{e}_{1}+I_{2} \omega_{2} \stackrel{\rightharpoonup}{e}_{2}+I_{3} \omega_{3} \vec{e}_{3} \\
& =I_{1}\left(\omega_{1} \vec{e}_{1}+\omega_{2} \vec{e}_{2}\right)+I_{3} \vec{\omega}_{3}
\end{aligned}
$$

And so:

$$
\frac{\vec{L}^{\prime}}{I_{3}}=\frac{1}{2} \stackrel{\rightharpoonup}{\omega}_{T}+\vec{\omega}_{3} \quad \stackrel{\rightharpoonup}{\omega}=\vec{\omega}_{T}+\vec{\omega}_{3}
$$

- Comments
(1) The fact that $\vec{\omega}_{T}$ is non zero means the plate will wobble as it spins. ω_{T} is what we mean by the wobble rate
(2) In the body frame \vec{w}_{T} precesses with rate Ω. In the Lab frame \vec{L} is constant and can be taken as the Z axis
(3) We will derive it formally next, but intuitively in each time moment Δt the disk rotates by $\omega_{3} \Delta t$, and the tilt angle (the direction of $\vec{\omega}_{T}$) advances by $\Omega \Delta t$ relative to this so the tilt has advanced by $\Delta \phi=\left(\omega_{3}+\Omega\right) \Delta t$, i.e.

$$
\dot{\phi} \simeq \omega_{3}+\Omega=2 \omega_{3} \text { for disk }
$$

See picture! (next page)

Time $t=0$

body frame

lab frame

Time Δt

Euler Angles of Spinning Plate

- We have worked out the angular velocity $\omega_{x}, \omega_{y}, \omega_{z}$ now we should relate these to the Euler angles θ, ϕ, ψ.

Since \vec{L} is constant we orient it along the fixed Z axis. Then the \vec{e}_{3} principal axis (the axle of the plate) is directed along Z

- The angle between \vec{e}_{3} and $\vec{e}_{3}(Z$ and $Z)$ is θ and this is constant in time

$$
\vec{\omega}_{3} \cdot \vec{L}=\omega_{3} L \cos \theta=\text { cons }
$$

So $\quad \dot{\theta}=0$
Δt

- Now recall the relation between the Euler angles and $\vec{\omega}$

- Now here we found

$$
\begin{aligned}
\omega_{x} & =-\omega_{T} \sin \Omega t \\
\omega_{y} & =\omega_{T} \cos \Omega t \\
\omega_{3}=\omega_{z} & =\text { const }
\end{aligned}
$$

- So comparison gives:

$$
\begin{aligned}
& \omega_{T}=\dot{\phi} \sin \theta \quad \text { and } \quad \psi=-\Omega t \\
& \text { i.e. } \dot{\psi}=-\Omega
\end{aligned}
$$

- So comparison shows

$$
\psi=-\Omega t \quad \omega_{T}=\dot{\phi} \sin \theta
$$

or $\ddot{\psi}=-\Omega$.

- Then from the third angular velocity equation

$$
\omega_{3}=\dot{\psi}+\dot{\phi} \cos \theta
$$

We find since $\psi=-\Omega$

$$
\phi=\frac{\omega_{3}+\Omega}{\cos \theta}
$$

precession
rate in terms of the spinning,ω_{3}, and precession Ω in body frame

- For the plate the tilt is usually small and then, $\cos \theta \simeq 1$. Thus we find:

$$
\dot{\phi} \simeq \omega_{3}+|\Omega|
$$

as we anticipated by watching the movie. For a disk $\Omega=+\omega_{3}$ and thus

$$
\dot{\phi} \simeq 2 \omega_{3}
$$

i, e. the rate of precession $\dot{\phi}$ is approximately twice the rate of spinning, ω_{3}, as anticipated

