Cross Products and Antisymmetric Tensors

- Consider the torque

The torque "lives" in the $x-y$ plane. But "points" in the z-direction. This motivates the following association

- For every vector $\vec{v}=v^{a} \vec{e}_{a}$ there is an associated anti-symmetric tensor \hat{v}

$$
\widehat{v}_{a b} \equiv \varepsilon_{a b c} V^{c}
$$

math people call \hat{V} the
and the inverse relation

$$
\text { "hodg e-dual" of } \vec{v}
$$

$$
v^{a}=\frac{1}{2} \varepsilon^{a b c} \hat{v}_{b c}
$$

i.e.

$$
\hat{v}=\left(\begin{array}{ccc}
0 & \hat{v}_{x y} & \hat{v}_{x z} \\
-\hat{v}_{x y} & 0 & \hat{v}_{y z} \\
-\hat{v}_{x z} & -\hat{v}_{y z} & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & v^{z} & -v^{y} \\
-v^{z} & 0 & v^{x} \\
v^{y} & -v^{x} & 0
\end{array}\right)
$$

So for torque $\hat{\tau}_{x y}=\tau^{z}$!

- Antisymmetric tensors express the cross product naturally:

$$
\begin{aligned}
\vec{V} \times \vec{w} & =\varepsilon_{a b c} V^{a} w^{b} \vec{e}^{c} \\
& =w^{b} \hat{v}_{b c} \vec{e}^{c}
\end{aligned}
$$

ie.

$$
\begin{aligned}
(\vec{v} \times \vec{w})_{c} & =w^{b} \hat{v}_{b c} \quad \text { or } \\
\vec{V} \times \vec{w} & =\vec{W} \cdot \hat{V} \quad \leftarrow \text { reversed order }
\end{aligned}
$$

This is very common in physics; e.g.

A magnetic field in the z direction "lives" in the $x y$ plane

$$
\begin{aligned}
\vec{B} & =\vec{\nabla} x \vec{A} \\
B^{z} & =\partial_{x} A_{y}-\partial_{y} A_{x} \\
& =\hat{B}_{x y}!_{0}
\end{aligned}
$$

Kinematics of Potation - Follows Tong

- Then we specify a fixed orthonormal basis

$$
-\underline{e}_{a} \equiv \text { fixed } \quad e_{a}-e_{-b}=\delta_{a b}
$$

- And a time dependent orthonormal basis
- $\vec{e}_{a}(t) \equiv$ time dependent basis which moves with the body

$$
\vec{e}_{a}(t) \cdot \vec{e}_{b}(t)=\delta_{a b}
$$

- There is a rotation matrix connecting $\left\{\stackrel{\rightharpoonup}{e}_{a}\right\}$ to $\left\{\vec{e}_{a}^{(t)}\right\}$

$$
\vec{e}_{a}(t)=R_{a c}(t) \stackrel{\rightharpoonup}{e}_{c}
$$

Clearly (taking the dot-product of A with \vec{e}_{b}) give

$$
\vec{e}_{a}(t) \cdot \vec{e}_{b}=R_{a b}(t)=\text { matrix of cosines }
$$

(2) For the rotations we are drawing:

$$
\begin{aligned}
& R_{11}=e_{1} \cdot e_{1}=\cos \theta \\
& R_{12}=e_{1} \cdot e_{2}=\sin \theta \\
& R_{21}=e_{2} \cdot e_{1}=-\sin \theta \\
& R_{22}=\cos \theta
\end{aligned}
$$

So

$$
(R)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Notations:
row a entry of matix, some would use Tab \#'s

$$
(R)_{a b}^{\downarrow}=R_{a b}=\left(R^{\top}\right)_{b}
$$ to keep separate entries and matrices. transpose of R

$$
\left(R R^{\top}\right)_{a b}=(R)_{a c}\left(R^{\top}\right)_{c b}=R_{a c} R_{b c}
$$

Claim: $R_{a b}$ is an orthogonal matrix, ie, $R^{-1}=R^{\top}$

$$
\begin{array}{r}
\vec{e}_{a}(t) \cdot \vec{e}_{b}(t)=\delta_{a b} \\
R_{a c} \underline{e}_{c} \cdot R_{b d} \vec{e}_{d}=\delta_{a b}
\end{array}
$$

Or $\quad R_{a c} R_{b c}=S_{a b}$ ice. $\left(R R^{\top}\right)_{a b}=S_{a b}$
And thus $R R^{\top}=\mathbb{1}$ is a orthogonal matrix
Angular velocity
fixed
rotating

- Pick a point $\vec{r}{ }^{2}$ on the ${ }^{\wedge}$ body

$$
\begin{gathered}
\vec{r}=r_{a} \vec{e}_{a}(t) \longleftrightarrow \text { changing in time } \\
\quad \pi_{\text {fixed }} \text { in time }
\end{gathered}
$$

- So

$$
\left.\left.\begin{array}{rl}
\frac{d \vec{r}}{d t} & \left.=r_{a} \frac{d \vec{e}_{c}}{d_{t}}=r_{a} \stackrel{R}{R}_{a b} \stackrel{\rightharpoonup}{e}_{-b}\right) \text { insert } \\
R^{-1} R
\end{array}\right] \quad \dot{R}_{a b} R_{b c}^{-1}\right) \vec{e}_{c} \quad \begin{aligned}
& \hat{\omega}_{a c} \equiv\left(\dot{R}_{a b} R_{b c}^{-1}\right)
\end{aligned}
$$

- $\hat{\omega}_{a b}$ is the angluar velocity matrix
- We will show that $\hat{\omega}$ is anti-symmetric
- We derived for $\vec{r}=r_{a} \vec{e}_{a}$:

$$
\frac{d \vec{r}}{d t}=\underbrace{r^{a} \hat{\omega}_{a b} \vec{e}_{b}}_{\vec{r} \cdot \hat{\omega}}
$$

This is what we called $\vec{r} \cdot \hat{\omega}$, which is naturally expressed as a crossproduct $\vec{r} \cdot \hat{\omega}=\vec{\omega} \times \vec{r}$. So

* $\quad d \vec{r} / d t=\vec{\omega} \times \vec{r}$
- Finally since \vec{r} was an arbitrary fixed vector we can apply to the basis vectors

$$
\frac{d \vec{e}_{a}}{d t}=\vec{\omega} \times \vec{e}_{a} \quad \text { or } \left.\quad \frac{d \vec{e}_{a}}{d t}=\hat{\omega}_{a b} \vec{e}_{b} \right\rvert\,
$$

Physical picture:

$$
\omega^{z}=\hat{\omega}_{x y}
$$

rotation in $x y$ plane

- If the components of \vec{r} are not fixed, $\vec{r}(t)=r^{a}(t) \vec{e}_{a}(t)$, then:

$$
\begin{aligned}
& d \stackrel{\rightharpoonup}{r} / d t=(d r a / d t) \vec{e}_{a}+r^{a} d \vec{e}_{a} / d t \\
& \frac{d \vec{r}}{d t}=\left(\frac{d \vec{r}}{d t}\right)_{r}+\vec{\omega} \times \vec{r}
\end{aligned}
$$

Here $(d \vec{r} / d t)_{r} \equiv \frac{d r_{a}}{d t} \vec{e}_{a}$, is the derivative "in" the rotating frame.

- $\hat{\omega}$ is the generates infinitessimal rotations.

$$
\frac{d \vec{e}_{a}}{d t}=\hat{\omega}_{a b} \vec{e}_{b} \Rightarrow \vec{e}_{a}(t+\Delta t)=\vec{e}_{a}+\hat{\omega}_{a b} \Delta t \vec{e}_{b}
$$

So

$$
\stackrel{\rightharpoonup}{e}_{a}(t+\Delta t)=(\mathbb{I}+\hat{\omega} \Delta t)_{a b} \vec{e}_{b}(t)
$$

Thus the matrix II $+\hat{\omega} \Delta t$ takes the basis at t, and rotates it to $t+\Delta t$.

- Proof that $\hat{\omega}$ is Anti Symmetric

Since $R R^{\top}=\mathbb{I}$ or $R_{a b} R_{c b}=\delta_{a c}$
we have

$$
\begin{aligned}
\dot{R}_{a b} R_{c b}+R_{a b} \dot{R}_{c b} & =0 \\
\omega_{a c}+\omega_{c a}=0 & \Rightarrow \omega_{a c}=-w_{c a}
\end{aligned}
$$

We used that $\leftarrow^{R^{\top}=R^{-1}}$

$$
\dot{R}_{a b} R_{c b}=\dot{R}_{a b}\left(R^{\top}\right)_{b c}=\left(\dot{R} R^{-1}\right)_{a c}=\omega_{a c}
$$

Aside:

$$
\begin{aligned}
\frac{d \stackrel{\rightharpoonup}{r}}{d t} & =\left(\frac{d r^{a}}{d t} \delta_{a b}+r^{a} \hat{\omega}_{a b}\right) \stackrel{\rightharpoonup}{e}_{b} \\
& \equiv\left(D_{t} r\right)_{b} \vec{e}_{b} \quad \hat{\omega}_{a b}^{(t)} \text { is }
\end{aligned}
$$

The combination is:

$$
\left(D_{t} r\right)_{b} \equiv \frac{d r^{a}}{d t} \delta_{a b}+r^{a} \hat{\omega}_{a b}
$$

and is called a covariant derivative!
$\left(D_{t} r\right)_{a}$ is the convariant derivative of $r_{a} . \hat{\omega}_{a b}$ is very analogous to the time component of a non-abelian gauge field in particle physics

