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REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

! x, y, z, !1 , !2 , !3", (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
!1 , !2 , !3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v " ! ẋ , ẏ , ż ". (25)

The angular velocity ! # (#x , #y , #z)T in world coordinates is
always linearly related to the time derivatives of the orientation
variables "̇ # (!̇1 , !̇2 ,!̇3)T:

! " M"̇, (26)

where M is an invertible 3 $ 3 matrix that depends only on the
orientation (!1 , !2 , !3). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

!!1 , !2 , !3" " !!, $, %", (27)

and

M " ! cos $ 0 sin ! sin $
sin $ 0 %sin ! cos $

0 1 cos !
" , (28)

which is invertible as long as det M # sin ! & 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (!1 , !2 , !3) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f " f0 &
d
dt '! x, y, z, !1 , !2 , !3", (29)

where f is the firing rate, f0 is the baseline rate, and ' is an
arbitrary function of object position (x, y, z) and orientation (!1 ,
!2 , !3), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function ' need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity !.

Figure 5. Euler angles (!, $, %) describe an arbitrary orientation of a
rigid object with axes (X(, Y(, Z() with respect to a standard orientation
with axes (X, Y, Z).
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3.5 Euler’s Angles

So far we’ve managed to make quite a lot of progress working just with the angular

velocity !a and we haven’t needed to introduce an explicit parametrization of the

configuration space C. But to make further progress we’re going to need to do this.

We will use a choice due to Euler which often leads to simple solutions.

Figure 36: The rotation from space frame {ẽa} to body frame {ea}.

A general rotation of a set of axis is shown in Figure 36. We’d like to construct a

way of parameterizing such a rotation. The way to do this was first described by Euler:

Euler’s Theorem:

An arbitrary rotation may be expressed as the product of 3 successive rotations about

3 (in general) di↵erent axes.

Proof: Let {ẽa} be space frame axes. Let {ea} be body frame axes. We want to find

the rotation R so that ea = Rabẽb. We can accomplish this in three steps

{ẽa}
R3(�)
�! {e0a}

R1(✓)
�! {e00a}

R3( )
�! {ea} (3.50)

Let’s look at these step in turn.

Step 1: Rotate by � about the ẽ3 axis. So e0a = R3(�)abẽb with

R3(�) =

0

BB@

cos� sin� 0

� sin� cos� 0

0 0 1

1

CCA (3.51)

This is shown in Figure 37.
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Figure 37: Step 1: Rotate around the space-frame axis ẽ3.

Step 2: Rotate by ✓ about the new axis e01. This axis e01 is sometimes called the

“line of nodes”. We write e00a = R1(✓)e0b with

R1(✓) =

0

BB@

1 0 0

0 cos ✓ sin ✓

0 � sin ✓ cos ✓

1

CCA (3.52)

This is shown in Figure 38

Figure 38: Step 2: Rotate around the new axis axis e01.

Step 3: Rotate by  about the new new axis e003 so ea = R3( )abe00b with

R3( ) =

0

BB@

cos sin 0

� sin cos 0

0 0 1

1

CCA (3.53)

This is shown in Figure 39.
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Figure 37: Step 1: Rotate around the space-frame axis ẽ3.

Step 2: Rotate by ✓ about the new axis e01. This axis e01 is sometimes called the

“line of nodes”. We write e00a = R1(✓)e0b with

R1(✓) =

0

BB@

1 0 0

0 cos ✓ sin ✓

0 � sin ✓ cos ✓

1

CCA (3.52)

This is shown in Figure 38

Figure 38: Step 2: Rotate around the new axis axis e01.

Step 3: Rotate by  about the new new axis e003 so ea = R3( )abe00b with

R3( ) =

0

BB@

cos sin 0

� sin cos 0

0 0 1

1

CCA (3.53)

This is shown in Figure 39.
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R3(�)R1(✓)R3( )

R =

Figure 39: Step 3: Rotate around the latest axis e003.

So putting it all together, we have

Rab(�, ✓, ) = [R3( )R1(✓)R3(�)]ab (3.54)

⇤
The angles �, ✓, are the Euler angles. If we write out the matrix R(�, ✓, ) longhand,

it reads

R =

0

BB@

cos cos�� cos ✓ sin� sin sin� cos + cos ✓ sin cos� sin ✓ sin 

� cos� sin � cos ✓ cos sin� � sin sin�+ cos ✓ cos cos� sin ✓ cos 

sin ✓ sin� � sin ✓ cos� cos ✓

1

CCA

Note: Recall that we may expand a vector r either in the body frame r = raea, or in

the space frame r = r̃aẽa. The above rotations can be equally well expressed in terms

of the coordinates ra rather than the basis {ea}: we have r̃b = raRab. Be aware that

some books choose to describe the Euler angles in terms of the coordinates ra which

they write in vector form. In some conventions this can lead to an apparent reversal in

the ordering of the three rotation matrices.

3.5.1 Leonhard Euler (1707-1783)

As is clear from the section headings, the main man for this chapter is Euler, by far the

most prolific mathematician of all time. As well as developing the dynamics of rotations,

he made huge contributions to the fields of number theory, geometry, topology, analysis

and fluid dynamics. For example, the lovely equation ei✓ = cos ✓ + i sin ✓ is due to

Euler. In 1744 he was the first to correctly present a limited example of the calculus of

variations (which we saw in section 2.1) although he generously gives credit to a rather

botched attempt by his friend Maupertuis in the same year. Euler also invented much

of the modern notation of mathematics: f(x) for a function; e for exponential; ⇡ for,

well, ⇡ and so on.

– 64 –
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REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

! x, y, z, !1 , !2 , !3", (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
!1 , !2 , !3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v " ! ẋ , ẏ , ż ". (25)

The angular velocity ! # (#x , #y , #z)T in world coordinates is
always linearly related to the time derivatives of the orientation
variables "̇ # (!̇1 , !̇2 ,!̇3 )T:

! " M"̇, (26)

where M is an invertible 3 $ 3 matrix that depends only on the
orientation (!1 , !2 , !3 ). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

!!1 , !2 , !3" " !!, $, %", (27)

and

M " ! cos $ 0 sin ! sin $
sin $ 0 %sin ! cos $

0 1 cos !
" , (28)

which is invertible as long as det M # sin ! & 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (!1 , !2 , !3) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f " f0 &
d
dt '! x, y, z, !1 , !2 , !3", (29)

where f is the firing rate, f0 is the baseline rate, and ' is an
arbitrary function of object position (x, y, z) and orientation (!1 ,
!2 , !3), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function ' need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity !.

Figure 5. Euler angles (!, $, %) describe an arbitrary orientation of a
rigid object with axes (X(, Y(, Z() with respect to a standard orientation
with axes (X, Y, Z).
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