Angular Velocity Again

- Recall that $\hat{\omega}_{a b} \equiv \dot{R}_{a c} R_{c b}^{-1}=\left(\dot{R} R^{-1}\right)_{a b}$

- Consider the red object moving in a circle
- ω records the orientation of x, y relative to the x, y. Don't worry about the cm motion. nothing more

$$
\hat{\omega}_{a b}=\left(\dot{R} R^{-1}\right)_{a b}=\left(\begin{array}{cc}
0 & \dot{\theta} \\
-\dot{\theta} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \omega \\
-\omega & 0
\end{array}\right)
$$

- So $\omega=\dot{\theta}$. Now we will do the same thing in 3D!

Determining The Rotation - Euler Angles
Now we will move on and reconstruct the orientation of the body from the angular velocities

- This is analogous to finding θ from $\omega(t)$
- The rigid body is charaterized by three angles, known as Euler Angles
- A sequence of rotations can take

$$
\underline{x}, \underline{y}, \underline{z} \text { to } x, y, z
$$

The steps are:
(1) First a rotation by \& around z :
(2) Then a rotation by θ around the new X axis (The line of nodes)
(3) Finally a rotation around the new z-axis by an angle ψ

- The ${ }^{~ f i r s t ~} h a n d o n t ~ s h o w s ~ t h e ~ s t e p s ~ g r a p h i c a l l y ~$
- The second handout shows the result mathematically

- First rotate by ϕ around \underline{Z}
- Then rotate by θ around the line of nodes
- Finally rotate by ψ around Z

Three combined rotations

$$
\begin{aligned}
& R_{3}(\psi) R_{1}(\theta) \\
& R R_{3}(\phi) \\
&-\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \sin \phi \cos \psi+\cos \theta \sin \psi \cos \phi & \sin \theta \sin \psi \\
-\cos \phi \sin \psi-\cos \theta \cos \psi \sin \phi & -\sin \psi \sin \phi+\cos \theta \cos \psi \cos \phi & \sin \theta \cos \psi \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right)
\end{aligned}
$$

- Now what is the relation between the $\vec{\omega}$ and the rotation matrix R Recall that

$$
\hat{\omega}_{a b} \equiv \dot{R}_{a c} R_{c b}^{-1}
$$

- So in principle a few key strokes with Mathematica determines $\hat{\omega}_{a b}$, with e.g. $\hat{\omega}_{12}=\omega^{3}$
- This will work. However, as physicists we can use the picture on the handout to write, for instance:

$$
\omega_{z^{\prime}}=\dot{\psi}+\dot{\phi} \cos \theta \quad \text { (see picture) }
$$

The analooghs formulas for ω_{x}^{\prime} and w_{y}, are given on the h andowt:

$$
\left\{\begin{array}{l}
\omega_{x^{\prime}}=\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi \\
\omega_{y^{\prime}}=\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi \\
\omega_{z}^{\prime}=\dot{\psi}+\dot{\phi} \cos \theta
\end{array}\right.
$$

Angular velocity equations

These are a set of differential equations which can be integrated (numerically usually) to determine the orientation angles ψ, Θ, ϕ

