Motion of a Heavy Symmetric Top

- We are considering a top which is spinning and symmetric (see picture on next page)

$$
I_{1}=I_{2} \neq I_{3}
$$

We want to write down the Lagrangian of the system and compute the rate at which it precesses, i.e. compute $\dot{\phi}$
We can either work with the cm as our origin, where the KE takes the form

$$
T=\frac{1}{2} M V_{c m}^{2}+\frac{1}{2} \omega_{a} I_{a b}^{c m} \omega_{b}
$$

Or we can work with the fixed base, 0 , where the KE is described entirely by the rotational KE around this point

$$
T=\frac{1}{2} \omega_{a} I_{a b}^{0} \omega_{b}
$$

The moment of inertia needs to be calculated around this point. We will do this, and stop writing the I^{0} superscript, $I_{a b} \equiv I^{0}$, below.

The Lagrangian of the system is

$$
L=\frac{1}{2} I_{1}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+\frac{1}{2} I_{3} \omega_{3}^{2}-m g l \cos \theta
$$

- Now we can express the Angular velocities in terms of the Euler Angles. Using the
handout (see next page for picture)

$$
\begin{aligned}
L=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+\frac{1}{2} I_{3}(\dot{\psi} & +\cos \theta \dot{\phi})^{2} \\
& -m g l \cos \theta
\end{aligned}
$$

- Now that we have this Lagrangian we can find the EOM. The external torque provided by gravity is perpendicular to the the $\dot{\psi}$ anxis and $\dot{\phi}$ axes and we therefore expect the angular momentum associated with these angles to be constant. Indeed they are cyclic coordinates

$$
\begin{aligned}
& p \psi=\frac{\partial L}{\partial \dot{\psi}}=I_{3}(\dot{\psi}+\cos \theta \dot{\phi})=\begin{array}{c}
\text { constant in time since } \\
\partial L / \partial \psi
\end{array} \\
& P_{\phi}=\frac{\partial L}{\partial \phi}=I_{1} \sin ^{2} \theta \dot{\phi}+I_{3}(\dot{\psi}+\cos \theta \dot{\phi}) \cos \theta=\text { cost } \\
& =I_{1} \sin ^{2} \theta \dot{\phi}+I_{3} P_{4} \cos \theta
\end{aligned}
$$

- The two derivatives $\dot{\psi}$ and $\dot{\phi}$ can be expressed in terms of the constants P_{ψ} and P_{ϕ}

$$
\dot{\phi}=\frac{p \text { precession rate }}{I_{1} \sin ^{2} \theta} \left\lvert\,, \quad \dot{\psi}=\frac{p_{\psi}}{\bar{I}_{3}}-\dot{\phi} \cos \theta\right.
$$

- Note the various terms

$$
\text { - } \frac{1}{2} E_{1} \sin ^{2} \theta \dot{\phi}^{2}=\frac{\left(P-P_{4} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta} \equiv K E \text { associated } \quad \text { with } \dot{\phi}
$$

And

$$
\frac{1}{2} I_{3}(\dot{\psi}+\cos \theta \dot{\phi})^{2}=\frac{P \psi^{2}}{2 I_{3}} \equiv K E \text { associated with }
$$

- Now we want to find an equation of motion for θ. Energy is Constant

$$
\left.\begin{array}{rl}
\frac{1}{2} I \dot{\theta}^{2}+\left[m g l \cos \theta+\frac{\left(p \phi-p_{\psi} \cos \theta\right)^{2}}{2 I_{1}}+\frac{p_{4}^{2}}{2 I_{3}}\right.
\end{array}\right]
$$

This saggests that the equation of motion for θ is

$$
I_{1} \ddot{\theta}=-\frac{\partial \text { Kef }^{\partial \theta} \quad \text { verify yourself }}{}
$$

- This can formalized with the Routh procedure The effective Lagrangian, $-R$, for the non-cyclic coordinate θ is

$$
-R=L-p_{\phi} \dot{\phi}-p_{\psi} \dot{\psi}
$$

Note that:

$$
p_{\phi} \dot{\phi}+p_{\psi} \dot{\psi}=\frac{\left(p_{\phi}-p_{4} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I_{3}}
$$

So

$$
-R=\frac{1}{2} I \dot{\theta}^{2}-U_{e f f}(\theta)
$$

Where

$$
u_{\text {eff }}(\theta)=m g l \cos \theta+\frac{\left(p \psi-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I}
$$

Precessing Top Intro

- When the top is spinning quickly, there is a configuration where the angle θ is constant, and then the tip of the top precesses. Here we will analyze this configuration, with the Lagrangian setup.
- θ = const, means we are at the minimum of $U_{\text {eff }}{ }^{\prime}(\theta)$, where $\ddot{\theta} \alpha-\partial u_{\text {eff }} / \partial \theta=0$!

Now we will compute the precession rate i.e. $\dot{\phi}$. First the freshman physics way, and then using $U_{\text {eff }}(\theta)$
Analysis of precession rate of the top
Side view (See figure)
Top view

The gravitational torque is $\vec{\tau}_{g}=m g l \sin \theta$ (into page).
So from geometry:

$$
\begin{aligned}
\frac{d \phi}{d t}=\frac{1}{L \sin \theta} \frac{d L}{d t} & =\frac{m g l \sin \theta}{L \sin \theta} \\
\frac{d \phi}{d t} \simeq \frac{m g l}{P_{\psi}} \quad & \text { this assumes that } \theta \\
& \text { doesn't change o } L \simeq P_{\psi}
\end{aligned}
$$

This derivation is approximate assuming that the spinning ${ }^{K E}$ along the body is large compared to the gravitational torque, saying $L \simeq p_{\psi}$.

Now we derive d ϕ / d from $U_{\text {eff }}(\theta)$, with the same approximations:

$$
\begin{aligned}
& \left.\theta \quad U_{\text {eff }}=m g l \cos \theta+\frac{\left(p_{\phi}-p_{4} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta} \longleftarrow \right\rvert\, \begin{array}{l}
\theta \text { is constant } \\
\text { at the min } \\
\text { of } U_{\text {eff }}(\theta)! \\
\text { Lets find } \theta_{\text {min }}
\end{array} \\
& \quad \dot{\phi}=\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)}{I_{1} \sin ^{2} \theta}<\text { precession rate. }
\end{aligned}
$$

The rate at $\theta=\theta_{\text {min }}$ is our goal

- Lets switch to dimensionless variables:

$$
\begin{aligned}
& \bar{g} \equiv \frac{m g l}{p^{2} / I} \equiv \text { gravitational torque } \\
& \text { relative to spinning } K E
\end{aligned}
$$

So

$$
\bar{u}=\frac{u_{\text {eff }}}{p_{4}^{2} / I}=\bar{g} \cos \theta+\frac{(\beta-\cos \theta)^{2}}{2 \sin ^{2} \theta}, \quad \dot{\phi}={\underset{I}{I_{1}}}^{p_{1}} \frac{(\beta-\cos \theta)}{\sin ^{2} \theta}
$$

- For $\bar{g} \ll 1$ we can solve, for the minimum of $U_{\text {eff. }}$ At zeroth order in gravity we neglect \bar{g} and the potential is minimum (and θ is constant) at:

$$
\cos \theta_{\min } \simeq \beta \quad P_{\phi} \uparrow_{\theta} P_{\psi} \quad P_{\phi} \simeq P_{\psi} \cos \beta
$$

- The precession rate $\dot{\phi}(\beta-\cos \theta)=0$. Of course! We need gravity for a torque. To first order

$$
\cos \theta_{\min } \equiv \beta+\delta \quad \kappa \text { first order in } \bar{g} . \delta \text { records }
$$

So $\sin ^{2} \theta \simeq 1-\beta^{2}$ and ueff is approximately:

$$
\begin{aligned}
& u_{e f f}=\bar{g}(\beta+\delta)+\frac{\delta^{2}}{2\left(1-\beta^{2}\right)} \quad \text { which is minimized } \\
& \text { at } \delta=-\bar{g}\left(1-\beta^{2}\right)
\end{aligned}
$$

- The precession rate at $\theta_{\min }$ is:

$$
\begin{aligned}
& \dot{\phi}=\frac{P \phi-P_{\psi} \cos \theta_{\min }}{I_{1} \sin ^{2} \theta_{\min }}=\frac{P \psi}{I_{1}} \frac{\left(\beta-\cos \theta_{m}\right)}{\sin ^{2} \theta_{m}} \simeq \frac{p_{\psi}}{I_{1}} \frac{-\delta}{\left(1-\beta^{2}\right)} \\
& \left.\dot{\phi} \simeq \frac{P_{\psi}}{I_{1}} \bar{g} \simeq \frac{P_{\psi}}{I_{1}}\left(\frac{m g l}{P_{4}^{2} / I_{1}}\right)=\frac{m g l}{P_{\psi}} \cdot \right\rvert\,
\end{aligned}
$$

In agrement with the Freshman analysis, though now we see how to include corrections!

The "Sleeping" top

* The top is stable and spins in an upright position $\theta=0$. Lets analyze this case.

$$
\begin{aligned}
& U_{e f f}(\theta)=m g l \cos \theta \\
&+\frac{(p \phi-p \psi \cos \theta)^{2}}{2 I_{1} \sin ^{2} \theta}
\end{aligned}
$$

- Since $\Theta \simeq 0$ is stable it must be a min of $u_{\text {eff }}(\theta)$
- $\theta=0$ can only be a stable point if $p_{\phi} \simeq p_{\psi}$. Then near $\theta \simeq 0$, we expand:

$$
\frac{\left(p \phi-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}=\frac{p_{\psi}^{2}}{2 I_{1}} \frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} \simeq \frac{p_{\psi}^{2} \theta^{2}}{8 I_{1}}
$$

- The potential near $\theta \simeq 0$ in this case is approximately, using $m g l \cos \theta \simeq m g l\left(1-\theta^{2} / 2\right)$:

$$
U_{\text {eff }} \simeq \text { const }+\left(\frac{p \psi^{2}}{8 I_{1}}-\frac{m g l}{2}\right) \theta^{2}
$$

- So the potential is a minimum at $\theta=0$ if

$$
P_{\psi}>2 \sqrt{m g l} I_{1}
$$

In terms of the spin rate $\omega_{3} \simeq P_{4} / I_{3}$

$$
\frac{w_{3}>2 \sqrt{\frac{m g l I_{1}}{I_{3}^{2}}}}{\uparrow}
$$

For ω_{3} smaller than this, the top simply falls over. It is not spinning fast enough to stand up at $\theta=0$.

