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(see picture on next page)

and compute the rate at which it precesses, i.e. compute

˙�



O



(see next page for picture)



REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

! x, y, z, !1 , !2 , !3", (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
!1 , !2 , !3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v " ! ẋ , ẏ , ż ". (25)

The angular velocity ! # (#x , #y , #z )T in world coordinates is
always linearly related to the time derivatives of the orientation
variables "̇ # (!̇1 , !̇2 ,!̇3 )T:

! " M"̇, (26)

where M is an invertible 3 $ 3 matrix that depends only on the
orientation (!1 , !2 , !3). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

!!1 , !2 , !3" " !!, $, %", (27)

and

M " ! cos $ 0 sin ! sin $
sin $ 0 %sin ! cos $

0 1 cos !
" , (28)

which is invertible as long as det M # sin ! & 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (!1 , !2 , !3 ) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f " f0 &
d
dt '! x, y, z, !1 , !2 , !3", (29)

where f is the firing rate, f0 is the baseline rate, and ' is an
arbitrary function of object position (x, y, z) and orientation (!1 ,
!2 , !3 ), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function ' need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity !.

Figure 5. Euler angles (!, $, %) describe an arbitrary orientation of a
rigid object with axes (X(, Y(, Z() with respect to a standard orientation
with axes (X, Y, Z).
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PrecessinglopIntro.ee
When the top is spinningquickly , there is a configuration
where the angle -0 is constant

,
and

then the tip of the top precesses .
Here

we will analyze this configuration, withthe Lagrangian setup .

• -0 = const
,
means we are at the minimum

of Uef , CO )
,
where ⑤ a - Juett 120=01

.

F) dot slow
dt

precession
rate

⑦ = const



Now we will compute the precession rate i.e. �̇. First the freshman physics
way, and then using Ue↵(✓)








