Transition To Continuum

- Goldstein 13.1
- Consider an infinite chain of oscillators.
- The unperturbed positions are $x_{j}=j a$.

The mass is m, the spring constant is γ (since k will be needed for wavenumber). The displacement of the j-th site is $q_{j}(t)$

The oscillators have a Lagrangian

$$
L=\sum_{j} \frac{1}{2} m \dot{q}_{j}^{2}-1 / 2 \gamma\left(q_{j+1}-q_{j}\right)^{2}
$$

with EOM

$$
m \ddot{q}_{l}=\gamma\left(q_{l+1}-q_{l}\right)-\gamma\left(q_{l}-q_{l-1}\right)
$$

ie

$$
m \frac{d^{2}}{d t^{2}}\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right)=\left(\begin{array}{cccc}
-2 \gamma & \gamma & & \\
\gamma & -2 \gamma & \gamma & \\
& & \gamma & -2 \gamma \\
& & \gamma & \gamma
\end{array}\right)
$$

- As usual we look for eigenmodes

$$
q_{j}=A E_{j} e^{-i \omega t}
$$

eigen frequency

- Substituting we have

$$
-m \omega^{2} E_{j}-\gamma\left(E_{j+1}-E_{j}\right)+\gamma\left(E_{j}-E_{j-1}\right)=0
$$

- Motivated by the wavelike Solution we take

$$
E_{j}=e^{i k x_{j}} \text {, so } q_{j}=A e^{i k x_{j}-i \omega t}
$$

- Now eigenvector
(1)

$$
\begin{aligned}
q_{j+1}-q_{j} & =A e^{-i \omega t}\left(e^{i k x_{j}+1}-e^{i k x_{j}}\right) \\
& =A e^{-i \omega t+i k x_{j}}\left(e^{i k a}-1\right)
\end{aligned}
$$

(2) $q_{j-1}-q_{j}=A e^{-i \omega t+i k x_{j}}\left(1-e^{-i k a}\right)$
(3) $m \omega^{2} q_{j}=A e^{-i \omega t+i k_{j}}$

- So equation t yields

$$
-m \omega^{2}+\gamma(\underbrace{2-e^{i k a}-e^{-i k a}}_{=4 \sin ^{2}(k a / 2)})=0
$$

- Or

$$
\omega_{0} \equiv \sqrt{\frac{\gamma}{m}} \quad \omega^{2}(k)=4 \omega_{0}^{2} \sin ^{2}(k a / 2)
$$

Summary:
(1) We have found a set of eigenvectors labelled by k. If only one eigenmode is excited

$$
\begin{aligned}
q_{j}(t) & =\operatorname{Re}\left[A_{k} E_{j}^{k} e^{-i \omega t}\right] \\
& =\operatorname{Re}\left[A_{k} e^{i k x_{j}-i \omega(k) t}\right]
\end{aligned}
$$

eigenfrequency
(2) The eigen-frequency for a given k is

$$
\omega(k)= \pm 2 \omega_{0} \sin (k a / 2)
$$

Transition to the Continuum
In the low-k limit we do not "see" the individual atoms. We
 should be able to reproduce our results with a continuum theory for $k a \ll 1$

$$
\sin (k a / 2)
$$

Expanding ${ }^{\wedge}$ for $k a \ll 1$ we have:

$$
\begin{aligned}
w & \left.= \pm 2 w_{0}\left(\frac{k a}{2}-\frac{1}{3!}\left(\frac{k a}{2}\right)^{3}+\ldots\right)\right) \\
& = \pm v_{0} k\left(1-(k a)^{2} / 24+\ldots\right)
\end{aligned}
$$

where we have defined the velocity w_{0} a

$$
v_{0}=w_{0} a=a \sqrt{\frac{\gamma}{m}}
$$

The correction, $(k a)^{2} / 24$, leads to dispersion and will change the velocity of the wave as k becomes comparable to the spacing a, as we will see later

First let's reproduce these results with continuum mechanics

Transition to the continuum
Returning to the lagrangian we introduce a field $q(t, x)$
$q_{j} \longrightarrow q(t, x)$ continuous variable: displacement at x at t.

$$
\begin{array}{r}
\sum_{2}^{m} \dot{q}_{j}^{2} \longrightarrow \int d x \underbrace{\mu\left(a_{t} q\right)^{2}}_{\text {mass per length }} \longrightarrow \mathrm{m} / a
\end{array}
$$

- The potential term is (young modulus

$$
\sum_{1} a(k a)\left(\frac{q_{j+1}-q_{i}}{a}\right)^{2} \longrightarrow \int d x Y\left(\frac{\partial q_{x}}{\partial x}\right)^{2}
$$

net force on 0 :

$$
\begin{aligned}
F_{0} & =Y \xi \text { per length } \\
& =Y\left(\frac{q(x+a)-q(x)}{a}\right)
\end{aligned}
$$

So the Lagrangian and action:

Lagrangian	$L=\int d x \underset{2}{1} \mu\left(\partial_{t} q\right)^{2}-\frac{1}{2} Y\left(\partial_{x} q\right)^{2}$
and action of Rod. $S=\int d t d x\left[\frac{1}{2} \mu\left(\partial_{t} q\right)^{2}-\frac{1}{2} Y\left(\partial_{x} q\right)^{2}\right]$$.$Lagrange.	

The Lagrange Equations

- Now lets determine the equation of motion

$$
S[q]=\int d t d x \mathcal{L}\left(\partial_{t} q, \partial_{x} q, q\right)
$$

- Lets get a notation:

So

$$
\begin{array}{ll}
\left.\begin{array}{l}
y^{a}=\left(y^{\prime}, y^{2}\right)=(t, x) \\
\partial_{a} q=\left(\partial_{t} q, \partial_{x} q\right) \\
d t d x=d^{2} y
\end{array}\right\} & \mathcal{L}\left(\partial_{a} q, q\right) \\
p^{a}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{a} q\right)=\text { canonical momentum }} \\
& \equiv\left(p^{0}, p^{\prime}\right)
\end{array}
$$

- The variational problem takes place between two space time surfaces

$$
\Sigma^{\text {final }}=\Sigma_{2}
$$

Σ_{1}, Σ_{2} are analogous to the endpoints t_{1}, t_{2}

Varying the action $S[q+\delta q]-S[q] \equiv \delta S$

$$
S S=\int d^{2} y \frac{\partial \alpha}{\partial\left(\partial_{a} q\right)} \partial_{a}(\delta q)+\frac{\partial \alpha}{\partial q} \delta q
$$

So we integrate by parts:

$$
\begin{gathered}
=\partial_{a}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{a} q\right)} \delta q\right)-\partial_{a}\left(\frac{\partial \mathcal{L}}{\partial(\partial a q)}\right) \delta q \\
\hat{\imath} \\
\text { divergence } \\
\text { of a vector: } \partial_{a} P^{a}=\vec{\nabla} \cdot \overrightarrow{v^{\prime}}
\end{gathered}
$$

So using the divegence theorem:

$$
\begin{aligned}
\delta S= & \int_{\Sigma_{2}} d \Sigma_{2 a} p^{a} \delta q-\int d \Sigma_{1 a} P_{1}^{a} \delta q(1) \\
& \stackrel{\Sigma_{1}}{\text { bndry terms }} \longrightarrow \\
& +\int d^{2} y\left(-\alpha_{a}\left(\frac{\partial \alpha}{\partial\left(\partial_{a} q\right)}\right)+\frac{\partial \alpha}{\partial q}\right) \delta q
\end{aligned}
$$

So the continuum Lagrange com read

$$
-\partial_{a}\left(\frac{\partial f}{\partial\left(\partial_{a} q\right)}\right)+\frac{\partial L}{\partial q}=0 \underset{~}{\text { Euler Lagrange }} \begin{array}{r}
\text { equations for } \\
\text { a field }
\end{array}
$$

Compare

$$
-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}+\frac{\partial L}{\partial q}=0
$$

- For the current case:

$$
\mathcal{L}=\frac{1}{2} \mu\left(\partial_{+} q\right)^{2}-\frac{1}{2} Y\left(\partial_{x} q\right)^{2} \leftarrow \underset{\text { density }}{\text { Lagrange }}
$$

- The fum read;

$$
\begin{aligned}
& -\partial_{t}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{t} q\right)}\right)-\partial_{x} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} q\right)}=0 \\
& -\partial_{t}\left(\mu \partial_{+} q\right)+\partial_{x}\left(Y \partial_{x} q\right)=0
\end{aligned}
$$

- Leading to a wave equation for q

$$
\mu \partial_{t}^{2} q-Y \partial_{x}^{2} q=0
$$

If we substitute $q=a e^{i k x} e^{-i \omega(k) t}$ we find

$$
\begin{array}{r}
-\mu \omega^{2}+y k^{2}=0 \\
\omega(k)= \pm \sqrt{\frac{y}{\mu}} k \\
\omega(k)= \pm v_{0} k
\end{array}
$$

Another Example: The string

- Consider the string with tension T

- The Kinetic Energy is $\mu \equiv$ mass/Length

$$
K E=\int d x \underset{2}{1} \mu\left(\alpha_{t} y\right)^{2}
$$

- The potential energy arises due to the stretching. We are increasing the length from $l_{1}=\Delta x$ to $l_{2}=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$. This takes work which is

$$
\begin{aligned}
\Delta W=\int_{l_{1}}^{l_{2}} T d l & =T\left[\sqrt{\Delta x^{2}+(\Delta y)^{2}}-\Delta x\right] \\
& \simeq \frac{T}{2}\left(\frac{\partial y}{\partial x}\right)^{2} \Delta x
\end{aligned} \quad \begin{aligned}
\text { expand } \\
\text { for small } \\
\Delta y / \Delta x \ll l
\end{aligned}
$$

- So

$$
S=\int d t d x\left[\frac{1}{2} \mu\left(d_{+} y\right)^{2}-\frac{T}{2}\left(\partial_{x} y\right)^{2}\right]
$$

- Thus we can find the EOM by varing the action, e.g.

$$
\left(\partial_{t} y\right)^{2} \longrightarrow\left(\partial_{t} y+\partial_{t} \delta y\right)^{2} \simeq\left(\partial_{t} y\right)^{2}+2 \partial_{t} y \partial_{t} \delta y
$$

So

$$
\delta S=\int d t d x\left[\mu \partial_{t} y \partial_{t} \delta_{y}-T \partial_{x} y \partial_{x} \delta_{y}\right]
$$

$\uparrow_{\text {integrate }}$
And

$$
\delta S=\int d t d x\left[-\partial_{t}\left(\mu \partial_{t} y\right)+\partial_{x}\left(T \partial_{x} y\right)\right] \delta y=0
$$

Setting to zero gives the Eon.

