Wave propagation
0. Lets return to the discrete case and discuss boundary conditions

- Consider a finite chain with periodic B.C. q_{j} with $j=-N / 2, \ldots \ldots, N / 2-1$
* $q_{N / 2}=q_{-N / 2}$
(2) Then exactly as before we would look for eigen solutions. (We will not use the summation convention in this section)

$$
q_{j}=A_{k} E_{j}^{k} e^{-i \omega t} \quad \text { (no sum) }
$$

- Then as before we find eigen-vectors ψ values

$$
E_{j}^{k}=e^{i k x_{j}} \quad \omega= \pm \omega(k)
$$

Now however we must have $q_{N / 2}=q_{-N / 2}$ or

$$
k N a=2 \pi m \Rightarrow k_{m}=\frac{2 \pi}{L} m
$$

- However not all m lead to independent solution since ($L=N a, x_{j}=j a, k_{m}=2 \pi \mathrm{~m} / \mathrm{L}$)

$$
e^{i k_{m} x_{j}}=e^{i 2 \pi j m / N}
$$

Thus, $m+N$ yields the same solution as m, and we can take the set

$$
k_{m}=\frac{2 \pi}{L} m \quad m=-\frac{N}{2} \ldots \ldots \frac{N}{2}-1
$$

We have found N eigen modes and we can use this as a basis for the complete solution:

$$
\begin{aligned}
& q_{j}=\frac{1}{L} \sum_{m} A_{m} e^{i k_{m} x_{j}-i \omega\left(k_{m}\right) t} \\
& \text { inserted for convenience }+B_{m} e^{i k_{m} x_{j}+i \omega\left(k_{n}\right) t}
\end{aligned}
$$

If q_{j} is real the term with $-k_{m}$ in the Berms, must match the term with k_{m} in the A-terms leading to $B_{-m}=A_{m}^{*}$, ie.

$$
q_{j}=\frac{1}{L} \sum_{m} A_{m} e^{i k_{m} x_{j}-i \omega(k) t}+c \cdot c .
$$

- Finally Lets take the limit $N \rightarrow \infty$

$$
\begin{aligned}
& \sum_{m} \rightarrow \int d m=\int \frac{L d k}{2 \pi} \\
& A_{m} \rightarrow A(k)
\end{aligned}
$$

Leading to a fourier integral representation:

$$
q(t, x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} A(k) e^{i k x-i \omega_{k} t}+c \cdot c
$$

Lets write out c.c.

$$
q(t, x)=\operatorname{Re}\left[\int_{-\infty}^{\infty} \frac{d k}{2 \pi} A(k) e^{i k x-i \omega(k) t}\right]
$$

Propagation of Wave Packets
Now let us consider the propagation of a superposition of waves

typical form

- The wave solution takes the form

$$
q(x, t)=\int \frac{d k}{2 \pi} A(k) e^{i k x-i \omega(k) t}
$$

we will take complex waves here. In general one would insert "real part" everywhere but that would lead to unnecessary complications, with no insight.

- The wave form at $t=0$ determines the coefficients $A(k)$

$$
q(x, 0)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} A(k) e^{i k x} \Longrightarrow A(k)=\int_{-\infty}^{\infty} d x u(x, 0) e^{-i k \cdot x}
$$

- These are fourier transforms, lets recall some properties of Fourier transforms. (A tutorial type problem is optional on the next homework)

$$
\begin{aligned}
& \hat{f}(k) \equiv \int_{-\infty}^{\infty} d x e^{-i k x} f(x) \\
& f(x) \equiv \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} \hat{f}(k)
\end{aligned}
$$

Definition

Inverse

- Then DO THE HOMEWORK

Space k-Space

$$
\underset{\sigma \rightarrow 1 / \sigma}{\operatorname{gaussian}} G(x)=e^{-x^{2} / 2 \sigma^{2}} \Longleftrightarrow \hat{G}(k)=\sqrt{2 \pi \sigma^{2}} e^{-k^{2} \sigma^{2} / 2}
$$

$$
f(x)=g\left(x-x_{0}\right) \Longleftrightarrow \hat{f}(k)=e^{-i k x} \hat{g}(k)
$$

- The uncertainty principle states that if

$$
\begin{aligned}
(\Delta x)^{2} & \equiv \int d x|f(x)|^{2}(x-\bar{x})^{2} \\
(\Delta k)^{2} & \equiv \int \frac{d k}{2 \pi}|\hat{f}(k)|^{2}(k-\bar{k})^{2}, \quad \text { find }
\end{aligned}
$$

$\Delta k \Delta x \geqslant 1 / 2$, with equality holding uniquely for Gaussian.

- The typical wave packet

$$
q(x, 0)=G(x) e^{i k_{0} x} \quad G(x) \equiv e^{-x^{2} / 2 \sigma^{2}}
$$

Gaussian

Wavelength determines k_{0}

- We have $A(k)=\sqrt{2 \pi \sigma^{2}} e^{-\frac{1}{2}\left(k-k_{0}\right)^{2} \sigma^{2}}$
- No we have at future times

$$
q(x, t)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} A(k) e^{i k x-i \omega(k) t}
$$

Now we can expand near k_{0}, since $A(k)$ is $A(k)$ is narrow

$$
\omega(k) \simeq \omega_{0}+U\left(k-k_{0}\right)
$$

So:

So

$$
q(x, t)=\underbrace{e^{i\left(u k_{0}-\omega_{0}\right) t}}_{\text {phase }} \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k(x-U()} A(k)
$$

- Thus since $A(k)$ was the FTrans of $q(x, 0)$

$$
q(x, t)=e^{i\left(u k_{0} \cdot w_{0}\right) t} q(x-u t, 0)
$$

Since $q(x, 0)=G(x) e^{i k_{0} x}$ we have

$$
q(x, t)=e^{i\left(k x_{0}-\omega_{0} t\right)} G(x-u t)
$$

So we see that the envelope $G(x)$ of the wave form is shifted by $U t$ with

$$
u=\frac{d w}{d k}
$$

\longleftarrow this is the speed of the packet
\uparrow grouprelocity

- Notice that the trajectory follows the points of stationary phase:

$$
\frac{\partial}{\partial k}(k x-w(k) t)=0 \Rightarrow x-u t=0
$$

The variational problem and dispersion
Lets recall for an infinite chain. of springs, found the dispersion curve:

$$
\omega(k)= \pm 2 \omega_{0} \sin \left(\frac{k a}{2}\right)
$$

$$
\omega_{0}=\sqrt{\frac{\gamma}{m}}
$$

with

$$
v_{0}=w_{0} a \quad \simeq \pm v_{0} k\left(1-\frac{(k a)^{2}}{24}+\ldots .\right)
$$

- Let's see haw the continuous theory can reproduce this result. Consider the action

$$
S=\int d t d x\left(\frac{1}{2} \mu\left(\partial_{+} q\right)^{2}-\frac{1}{2} Y\left(\partial_{x} q\right)^{2}+C\left(\partial_{x}^{2} q\right)^{2}\right)
$$

Then we vary the action, e.g.

$$
\begin{aligned}
\left(\partial_{x}^{2} q\right)^{2} & \longrightarrow\left(\partial_{x}^{2} q+\partial_{x}^{2} \delta q\right)^{2} \\
& \simeq\left(\partial_{x}^{2} q\right)^{2}+2\left(\partial_{x}^{2} q\right) \partial_{x}^{2} \delta q
\end{aligned}
$$

So

$$
\left.\delta S=\int_{q}^{\int} d t d x \partial_{t} q \partial_{t} \delta q-Y \partial_{x} q \partial_{x} \delta q+2 c\left(\partial_{x}^{2} q\right) \partial_{x}^{2} \delta q\right)
$$

integrate by parts ignoring all boundary terms

- Find

$$
\delta S=\int d t d x\left[-\partial_{t}\left(\mu \partial_{t} q\right)+\partial_{x}\left(y \partial_{x} q\right)+2 \partial_{x}^{2}\left(\left(\partial_{x}^{2} q\right)\right)\right] \delta q
$$

So the EOM is

$$
-\partial_{t}\left(\mu \partial_{t} q\right)+\partial_{x}\left(Y \partial_{x} q\right)+2 \partial_{x}^{2}\left[\left(\left(\partial_{x} q\right)^{2}\right]=0\right.
$$

- Treating the parameters as constants we substitute $q=A e^{i k x-i \omega t}$

$$
\mu w^{2}-Y k^{2}+2 c k^{4}=0
$$

For $C k^{4} \ll Y k^{2} \quad w e$ find $\omega= \pm\left(Y / \mu k^{2}-\frac{c}{\mu} k^{4}\right)^{1 / 2}$

$$
\omega \simeq \pm \sqrt{\frac{Y}{\mu}} k\left(1-\frac{c}{Y} k^{2} \ldots \ldots\right)
$$

- Thus by choosing C and Y

$$
\sqrt{\frac{Y}{\mu}}=\omega_{0} a \quad \text { and } \quad \frac{C}{Y}=\frac{a^{2}}{24}
$$

we can reproduce the microscopic theory.

* In general by adding more and more derivatives to the action, such as $\left(\partial_{x}^{3} q\right)^{2}$, even higher terms of the micro-theory can be reproduced by tuning the "low-energy" constants such as C in this case.

