Wave propagation

Lets return to, the discrete case and discuss boundary conditions · Consider a finite chain with periodic B.C. Q with j=-N/2,, N/2-1 $\frac{1}{N_{12}} = \frac{1}{2} - \frac{1}{N_{12}}$ Then exactly as before we would look for eigen solutions. (We will not use the summation convention in this section) convention in this section) gj = A E E e i wt (no sum) Then as before we find eigen-vectors + values $E_{1}^{k} = e^{ik \times j} \quad \omega = \pm \omega(k)$ Now however we must have $g_{N/2} = g_{-N/2}$ ٥ſ

 $k Na = 2\pi m \implies k = 2\pi m$ integer L

 However not all m lead to independent solution since $(L=Na, x_j = ja, k_m = 2\pi m/L)$ eikm×g = ei2Ttjm/N Thus, m+N yields the same solution as m, and we can take the set $k_m = 2\overline{11} m \qquad m = -N \qquad N - 1$ We have found N eigen N modes modes and we can use this as a basis for the complete solution : $q_{j} = \frac{1}{L} \sum_{m} A_{m} e^{ik_{m}x_{j} - i\omega(k_{m})t}$ $\frac{1}{L} \sum_{m} A_{m} e^{ik_{m}x_{j} - i\omega(k_{m})t}$ $\frac{1}{10 \text{ serted for convenienc}} + B_{m} e^{ik_{m}x_{j} + i\omega(k_{m})t}$ If q_j is real the term with $-k_m$ in the Bterms, must match the term with k_m in the A-terms leading to $B_{-m} = A_m^*$, i.e. $q_j = \frac{1}{m} \sum_{k=1}^{\infty} A_m e^{ik_m x_j - iw(k)t} + c.c.$ Complex conjuge te of first term

Finally Lets take the limit N -> 00 $\sum_{m} \rightarrow \int dm = \int \frac{L dk}{2\pi}$

 $A_{n} \rightarrow A(k)$

Leading to a fourier integral representation: $q(t,x) = \int \frac{dk}{2\pi} A(k) e^{ikx - i\omega t} + c.c.$

• Lets write out c.c. $q(t,x) = Re \left[\int_{-\alpha 2}^{\infty} \frac{dk}{2\pi} A(k) e^{ikx - iw(k)t} \right]$

Propagation of Wave Packets Now let us consider the propagation of a superposition of waves typical form The wave solution takes the form $q(x,t) = \int dk A(k) e^{ikx - iw(k)t}$ we will take complex waves here. In general one would insert "real part" everywhere but that would lead to unnecessary complications with no insight. The wave form at t=0 determines the coefficients A(k) $g(x,0) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} A(k) e^{ikx} \implies A(k) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} u(x,0) e^{-ikx}$

• These are fourier transforms, lets recall
some properties of Fourier transforms.
(A tulorial type problem is optional on the
next homework)

$$\hat{f}(k) \equiv \int_{dx}^{\infty} e^{ikx} f(x)$$
 Definition
 $f(x) \equiv \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \hat{f}(k)$ Inverse
 $f(x) \equiv \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \hat{f}(k)$ Inverse
• Then DO THE HOMEWORK
Space k-Space
gaussian
 $\sigma \rightarrow Vr G(x) = e^{-\chi^2/2\sigma^2} \iff \hat{G}(k) = \sqrt{2\pi\sigma^2} e^{-k^2\sigma^2/2}$
Phase $f(x) = e^{ik\sigma^2} g(x) \iff \hat{f}(k) = \hat{g}(k-k_0)$
 $f(x) = g(x-x_0) \iff \hat{f}(k) = e^{-ikx} \hat{g}(k)$
• The uncertainty principle states that if
 $(\Delta x)^2 \equiv \int \frac{dk}{2\pi} |\hat{f}(k)|^2 (x - \bar{x})^2$
 $(\Delta k)^2 \equiv \int \frac{dk}{2\pi} |\hat{f}(k)|^2 (k - \bar{k})^2$ find
 $\Delta k \Delta x \gg V_2$, with eguality holding uniquely
for Gaussian.

So

$$g(x,t) = e^{i(Uk_0 - w_0)t} \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ik(x - Ut)} A(t)$$
phase
Thus since $A(k)$ was the FTrans of $g(x,0)$
 $g(x,t) = e^{i(Uk_0 - w_0)t} q(x - Ut, 0)$
Since $g(x,0) = G(x)e^{ik_0 \times}$ we have
 $g(x,t) = e^{i(kx_0 - w_0t)} G(x - Ut)$
So we see that the envelope $G(x)$ of the
wave form is shifted by Ut with
 $U = dw$
 dk
 k_0 = this is the
speed of the
packet
 $group velocity$
Notice that the trajectory follows the points
of stationary phase:
 $\frac{\partial}{\partial k} (kx - w(k)t) = 0 = 2 \times - Ut = 0$

The variational problem and dispersion Lets recall for an infinite chain.
 of springs, found the dispersion curve: with oith Vo= woa $\simeq \pm V_{k} k (1 - (ka)^{2} +)$ Let's see how the continuous theory Can reproduce this result. Consider the action $S = \int dt dx \left(\frac{1}{2} \mu \partial_t q \right)^2 - \frac{1}{2} (\partial_x q)^2 + C (\partial_x^2 q)^2 \right)$ Then we vary the action, e.g. $(\partial_x^2 q)^2 \longrightarrow (\partial_x^2 q + \partial_x^2 \delta q)^2$ $\simeq (\partial_x^2 q)^2 + 2 (\partial_x^2 q) \partial_x^2 \delta q$ e So $SS = \int dt dx \left(\mu \partial_t q \partial_t Sq - Y \partial_x q \partial_x Sq + 2 \left(\partial_x^2 q \right) \partial_x^2 Sq \right)$? 2× integrate by parts integrate by parts ignoring all boundary terms

• Find $\delta S = \int dt dx \left[-\partial_t (\mu \partial_t q) + \partial_x (Y \partial_x q) + 2 \partial_x^2 (C(\partial_x^2 q)) \right] \delta q$ So the EOM is $-\partial_{t}(\mu\partial_{t}q) + \partial_{x}(\gamma\partial_{x}q) + 2\partial_{x}^{2}[(\partial_{x}q)^{2}] = 0$ Treating the parameters as constants we substitute q = A e^{ikx-iwt} $\mu w^2 - Y k^2 + 2C k^4 = 0$ For $Ck^{4} \ll Yk^{2}$ we find $w^{\pm} (Y/\mu k^{2} - Ck^{4})^{\frac{1}{2}}$ $\omega \simeq \pm \int \frac{Y}{M} k \left(1 - \frac{C}{V} k^2 \dots \right)$ Thus by choosing C and Y $\frac{Y}{\mu} = w_0 a \quad \text{and} \quad \frac{C}{Y} = \frac{a^2}{24}$ we can reproduce the microscopic theory. In general by adding more and more derivatives to the action, such as $(\partial_x^3 q)^2$, even higher terms of the micro-theory can be reproduced by tuning the "low-energy" constants such as C in this case,