
Energy Momentum in the Waves

•• The canonical momentum density for the

Lagrangian :
- Lagrange density L
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•B Then the Hamiltonian function h = ? pig " - L
for a discrete system becomes

h = Jdxttodty - L

or

h - Jdx ( {µC2tyTtI(2×yY )
-

energy density E

•• We expect the total energy h to be conserved
.

We also expect that the energy is conserved over

any patch , except for the energy that flows
out of the patch



• The most (only ? ) way to achieve local energy
conservation is to have the energy satisfy a

conservationtawa
✓ energy flux S " : energy 1 time

2- E t 2×5=0
(
energy density
energy I length

(In 3 - dimensions E -- energy hot , S
"
- energy /Area/time )

in

↳ 54×+0×7

To
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• Then integrating over ox we have

2T fdx E = - J 2×51
OX OX
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energy in ox
"
bndry terms

"

, nothing inside can

change the energy

Here 5 is the work by the left side of the
interface ( the inside ) on the right (the outside ) :

u

n = normal
in out
→

5. no = Sx



• The energy flux can be computed with simple
mechanics in

→

T = tension

in IT
,

#o angle is small

qdWq = Tsino 2ty = T 227×221

Here dwldt is the work done by the tension (outside )

on the string inside the box
.
We want S× the

work per time by the inside Klett side ) on the

outside so we multiply by - I .

5. = - TfL
, )l¥ )

c will derive this conservation law

2tE t 2×5
"
so

and a similar one for momentum in the

next section
.
The conservation law for momentum

reads

2tg× t 2×T×× = O

① Here g× is the momentum in the x - direction

per length .
( see below )



② T×× is the force by the left hand side ( inside )

on the outside
.

- T×× is force by out on in .

in
£

I 2tg× = - 2×T××
-

net force luolume
→

gx

A similar ( Newton Law ) derivation gives

gx = -m 242g We will
2x 2T derive these

expressions and

T××= iffy tuff )' } the conservation

Laws from the

EOM next
.



The canonical stress tensor

• The canonical stress tensor summarizes

these conservation laws .
First define

Xm = ( Xo
,
X' ) E ( t,x7

2µs 2- In = 2€
-

axn 212mg )

Then for Lagrange density L( y , any ,x)

Tv = - 2b

y ,
any t LST

21dm

To rember this think -pig -1L = - H
,

but

p gets replaced by IT - = 2£12 (any ) .

• We will show now

2µTm , = O L
two equations
one for USO

and one for us I

• For the lagrange density L- tzmldtyl ' -Eby)
'

T°o= - E si
t

= -

daffy , by
th soo = - E



And
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o
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212×41

= + T 2×y2+y = - S×

So

2£ Too t 2×7×0=0 encodes the

energy conservation law 2, E t 2×5×-0

• Similarly :

Tox = -2£ 2×y = -m2ty2xy ⇒ §*
212+41

T "
x ⇐ - 21 2×ytL8×x = T2×y2×y th
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=

Iz (2x y ) ' t mgtdty )
'

And the momentum conservation law

It gx t 2×T××=0



Proof that 2mTmu " O

Icy , 2mg , Xm )

The proof parallels the proof that 2+4=0
Just differentiate and use the EOM

,

2µTmv = am l - as dry t LST )

212mg )

= 2mL - 2£ ) 2vy - 21 229
MY 212µg ) ←

cancel
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e see that
-

=O
, by the EOM

-

2/3,1+34=0
leading to the result

2µTh ✓
= 2€

.

When I does not
2W

depend explicitly on space - time
,

we find :
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,
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n


