Energy Momentum in the Waves The canonical momentum density for the Lagrangian: Lagrange density of $L = \int dx \, \frac{1}{2} \mu \left(\partial_t y \right)^2 - \frac{1}{2} T \left(\partial_x y \right)^2$ y (t,x) is $\pi^{0} = \frac{\partial \mathcal{L}}{\partial (\partial_{t} y)} = \mu \partial_{t} y$ take a string for example• Then the Hamiltonian function $h = \sum_{i} p_{i} \dot{q}^{i} - L$ for a discrete system becomes $h = \int dx \ \mathcal{N}^{o} \partial_{t} y - \mathcal{L}$ or $h = \int dx \left(\frac{1}{2} \mu (\partial_{ty})^{2} + \frac{1}{2} (\partial_{xy})^{2} \right)$ energy density E • We expect the total energy h to be conserved. We also expect that the energy is conserved over any patch, except for the energy that flows

out of the patch

• The most (only?) way to achieve local energy
conservation is to have the energy satisfy a
conservation law

energy flux
$$S^{\times}$$
: energy/time

 $\partial_t \mathcal{E} + \partial_X S^{\times} = O$

(energy density
energy/length

(In 3-dimensions \mathcal{E} = energy/vol , S^{\times} = energy/Area/time)

 $S^{\times}(x) \rightarrow S^{\times}(x+\partial x)$

 $S^{\times}(x) \rightarrow S^{\times}(x+\partial x)$

 δx
• Then integrating over Δx we have
 $\partial_t \int_{\partial x} \mathcal{E} = -\int_{\partial x} S^{\times}$
 $= -(S^{\times}(x+\partial x) - S^{\times}(x))$
energy in Δx budy terms noting inside can
change the energy
Here S^{\times} is the work by the left side of the
interface (the inside) on the right (the outside):

 $\hat{S} \cdot \hat{n} = S^{\times}$

• The energy flux can be computed with simple T = tension mechanics angle is small Here dW/dt is the work done by the tension (outside) on the string inside the box. We want S* the work per time by the inside (Left side) on the outside so we multiply by -1. $S^{\times} = -T \begin{pmatrix} \partial y \\ \partial x \end{pmatrix} \begin{pmatrix} \partial y \\ \partial z \end{pmatrix}$ We will derive this conservation law $\partial_{+} \mathcal{E} + \partial_{-} \mathcal{S}^{\times} = 0$ and a similar one for momentum in the next section. The conservation law for momentum reads $\partial_t g_X + \partial_x T^* = 0$ Here $g_{\mathcal{X}}$ is the momentum in the x-direction per length, (see below)

(2) T_{x}^{*} is the force by the left hand side (inside) the outside _ - T × is force by out on in. on $\partial_t g_x = - \partial_x T^*_x$ net force / volume ٩× A similar (Newton Law) derivation gives $g_{x} = -\mu \partial_{y} \partial_{y}$ $\partial_{x} \partial_{t}$ We will derive these expressions and $T^{\prime \prime} = T(\frac{\partial y}{\partial x})^{2} + \mu (\frac{\partial y}{\partial y})^{2}$ the conservation Laws from the FOM next.

The canonical stress tensor • The canonical stress tensor summarizes these conservation laws. First define $X^{\mu} \equiv (x^{\circ}, x') \equiv (t, x]$ $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}$ $\frac{\pi}{2} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} y)}$ Then for Lagrange density L(y, 2, y, x) $T^{\prime} = -\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} y)} \partial_{\nu} y + \mathcal{L} S^{\prime}$ To rember this think $-p\dot{q}+L = -H$ but p gets replaced by $T^{-} = \partial \mathcal{K} / \partial (\partial_{\mu} q)$. · We will show now on T^m = 0 two equations one for v=0 and one for u=1 • For the lagrange density $\propto = \frac{1}{2}M\partial_t y l^2 - \frac{1}{2}(\partial_x y)^2$ $T_{o}^{*} = -\varepsilon$ $= - \frac{\partial \mathcal{L}}{\partial (\partial_{+} y)} + \mathcal{L} \delta^{\circ}_{0} = -\mathcal{E}$

And

 $T^{\times}_{o} = -\frac{\partial \mathcal{L}}{\partial_{t}} \partial_{t} y + \mathcal{L} \delta^{\times}_{o}$ 2(2×4) $= + T \partial_x y \partial_t y = -S^{\times}$ So 2, T°, + 2, T×, = 0 encodes the energy conservation law $\partial_t \varepsilon + \partial_x S^* = 0$ - Similarly: $T_{x}^{\circ} = -\partial \mathcal{L} \quad \partial_{x} y = -\mu \partial_{y} y \partial_{x} y \equiv g_{x}$ $\partial(\partial_{y} y)$ $T_{x}^{*} = -\frac{\partial \mathcal{L}}{\partial x} \rightarrow y + \mathcal{L}\delta_{x}^{*} = T\partial_{x}y\partial_{x}y + \mathcal{L}$ 2(dxy) = $T (\partial_x y)^2 + \mu (\partial_y y)^2$ And the momentum conservation law $\partial_t g_{\chi} + \partial_x T^* = 0$

Proof that 2 Thu =0 $\mathcal{L}(\mathbf{y}, \partial_{\mu}\mathbf{y}, \mathbf{x}^{n})$ • The proof parallels the proof that $\partial_t h = 0$ Just differentiate and use the EOM $\partial_{\mu}T^{\mu}_{\nu} = \partial_{\mu}\left(-\frac{\partial \alpha}{\partial \mu}\right) + \alpha S^{\mu}_{\nu}$ $= \partial_{\mu} \left(- \frac{\partial \mathcal{L}}{\partial \mu} \right) \partial_{\nu} y - \frac{\partial \mathcal{L}}{\partial \mu} \partial_{\mu} \partial_{\nu} y$ $= \frac{\partial \mathcal{L}}{\partial \mu} \partial_{\mu} y - \frac{\partial \mathcal{L}}{\partial \mu} \partial_{\mu} \partial_{\nu} y$ (ance) $+ \frac{\partial \mathcal{L}}{\partial y} \frac{\partial \gamma}{\partial y} + \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \frac{\partial \gamma}{\partial \gamma} \frac{\partial \gamma}{\partial \gamma} + \frac{\partial \mathcal{L}}{\partial \gamma} + \frac{$ We see that ____ = 0, by the EOM $-\partial_{m}\left(\frac{\partial \mathcal{L}}{\partial_{m} y}\right) + \frac{\partial \mathcal{L}}{\partial y} = 0$ leading to the result 2, The = of When I does not depend explicitly on space-time we find; $\partial_{\mu} T^{\mu} = 0$