
Assignment # 4
We will consider the 3-dimensional harmonic oscillator.

H =
p2

2M
+

1

2
Kr2 (1)

with K the spring constant.

1. Warm-up. Starting from the equation

Hψ = Eψ (2)

and the rule px → −i~ ∂
∂x

, Show that the Schrödinger Equation can be
written [

− ~2

2M
∇2 +

1

2
Kr2

]
Ψ = EΨ (3)

2. Dimension-less variables. The dimension-full constants in this equation
are

~,M,K (4)

• Only one combination of these parameters has dimension of length.
Determine this combination. Answer:

Ro =

(
~2

M K

)1/4

(5)

• Only one combination of these has units of frequency. Determine
this combination Answer:

ωo =

√
K

M
(6)

• The only combination of parameters with dimension of energy is

~ωo (7)

Express this amount energy in terms of K and Ro. Express this
amount of energy ~,M,Ro.
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• Introduce a bunch of dimensionless variables. For example

r̄ = r/Ro (8)

Ē = E/(~ωo) (9)

ψ̄(r̄) = R3/2
o ψ(r) (10)

∇̄2 =
∂2

∂x̄2
+

∂2

∂ȳ2
+

∂2

∂z̄2
(11)

Show that ∫
d3r̄ |ψ(r̄)|2 = 1 (12)

• With this set of units show that the Schrödinger equation can be
written [

−1

2
∇̄2 +

1

2
r̄2

]
ψ = Ēψ̄ (13)

• After going through this excercise a bunch of times one realizes is
that this is the same as saying

~ = K = M = 1 (14)

• The condition that the particle be considered non-relativistic is(v
c

)2

� 1 (15)

Show that this condition can be written as a constraint that the
oscillator energy ~ωo be much less than the rest mass energy mc2.
(Hint what are the units of velocity.)

3. Angular momentum is
Lz = x py − y px (16)

Work in polar coordinates to show that

Lz = −i~ ∂

∂φ
(17)

Using the relations x = r cos(φ) and y = r sin(φ), show that

∂

∂x
= cos(φ)

∂

∂r
− sin(φ)

r

∂

∂φ
(18)

∂

∂y
= sin(φ)

∂

∂r
+

cos(φ)

r

∂

∂φ
(19)
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Then use the fact that

px = −i~ ∂

∂x
(20)

py = −i~ ∂

∂y
(21)

To deduce Lz/~. In a similar way it may be shown that be shown that

−L
2

~2
=

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin(θ)

∂2

∂φ2
(22)

4. Looking up ∇2 in spherical coordinates show that

−~2

2M
∇2 =

−~2

2M

1

r2

∂

∂r
r2 ∂

∂r︸ ︷︷ ︸
radial KE

+
L2

2Mr2︸ ︷︷ ︸
angular KE

(23)

5. Use classical physics to show that the kinetic energy of a particle moving
around in a circle is

KE =
L2

cl

2Mr2
(24)

where Lcl = mvr

6. Show that the three spherical harmonics for ` = 1 , Ylm(θ, φ)

Y10 =

√
3

4π
cos(θ) (25)

Y1±1 = ∓
√

3

8π
sin(θ) e±iφ (26)

Have definite definite total angular momentum and have definite angu-
lar momentum around the z axis, i.e. show by straight forward differ-
entiation that

L2 Ylm = `(`+ 1)~2 Ylm (27)

Lz Ylm = m~Ylm (28)
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7. For the Schrödinger equation in Eq. ??, first rewrite the Laplace oper-
ator as in Eq. ??. Show that if one substitutes

ψ(r, θ, φ) =
u`(r)

r
Ylm(θ, φ) (29)

One obtains an equation for u(r)[
−~2

2M

d2

dr2
+
`(`+ 1)~2

2Mr2
+

1

2
Kr2

]
u(r) = Eu(r) (30)

8. Show that the norm condition∫
d3r |ψ|2 = 1 (31)

Becomes a condition on u(r)∫ ∞

0

dr |u(r)|2 = 1 (32)

Use the fact that ∫ π

0

dθ

∫ 2π

0

dφ sin(θ) |Ylm|2 = 1 (33)

9. Show that in terms of “barred” variables this radial Schrödinger equa-
tion becomes [

−1

2

d2

dr̄2
+
`(`+ 1)

2r̄2
+

1

2
r̄2

]
u(r̄) = Ēu(r̄) (34)

with
ū`(r̄) = R1/2

o u(r) (35)

10. This equation always has solutions. Only for particular values of the
energy does this solution decay to zero for r → ∞. We label these
energies as En n = 0, 1, 2.... The radial wave functions u(r) depend on
what is Ēn and ` we therefore denote these as

ūn,`(r̄) (36)
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• For every n the energies are

Ēn =
En

~ωo

= n+
3

2
(37)

The 3
2

~ωo is the zero point energy

For every n, ` takes on the values

` = n, n− 2, . . . 1 or 0 (38)

The lowest energy eigen-functions and there (dimensonless) eigen-
values are

un,` = C r̄`+1e−
r̄2

2 Pn,`(r̄) (39)

where Pn,`(r) is a polynomial

P0,0(r) = 1 (40)

P1,1(r) = 1 (41)

P2,2(r) = 1 (42)

P2,0(r) =
3

2
− r2 (43)

P3,3(r) = 1 (44)

P3,1(r) =
5

2
− r2 (45)

• Verify that n = 1, ū1,1 is in fact a solution to the dimensionless
Schrödinger equation Eq. 34 with the correct eigen-energy Ēn.
Without using dimensionless variables this excercise would quickly
degenerate into a morass of symbols.

11. The wave function is actually a doublet

Ψ =

(
ψ+(r)
ψ−(r)

)
(46)

Everything that we did in the previous section applies for ψ+ and ψ−
separately.

|ψ+|2 = the probability to have spin up (47)

The spin operators act in this 2× 2 doublet space

Sx =
~
2

(
0 1
1 0

)
Sy =

~
2

(
0 −i
i 0

)
Sz =

~
2

(
1 0
0 −1

)
(48)
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12. Show that

Ψ = ψ(r, θ, φ)

(
1
0

)
(49)

has spin ~/2 in the z direction.

13. Determine the spin wave function

Ψ = ψ(r, θ, φ)

(
a
b

)
(50)

which has definite spin of +~/2 in the y direction. That is: (1) de-
termine the eigen-values and and eigen-vectors of Sy (2) One of the
eigen-values is +~/2 determine the corresponding eigen vector.

14. For definiteness consider ` = 1, the six states

f(r)

(
Ylm(θ, φ)

0

)
f(r)

(
0

Ylm(θ, φ)

)
(51)

with m = −1, 0, 1 are spin 1
2
. Show this by showing that showing that

they are eigensates of

S2 = S2
x + S2

y + S2
z (52)

with eigenvalue

s(s+ 1)~2 =
3

4
~2 (53)

Similarly, they have orbital angular momentum 1 by since

L2

[
f(r)

(
Ylm(θ, φ)

0

)]
= f(r)

(
L2Ylm(θ, φ)

0

)
(54)

= f(r)

(
`(`+ 1)~2Ylm(θ, φ)

0

)
(55)

= `(`+ 1)~2

[
f(r)

(
Ylm(θ, φ)

0

)]
(56)

15. These six states recombine to become eigenstates of definite total an-
gular momentum squared, J2 and Jz. The total angular momentum
is

J = L + S . (57)
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For instance show that by mixing together two of these state

ΨJ= 3
2
,MJ= 1

2
=

√
2

3

(
Y10

0

)
+

√
1

3

(
0
Y11

)
(58)

One obtains a state with definite value of Jz, i.e. show that

(Lz + Sz)ΨJ= 3
2
,MJ= 1

2
= +

~
2
ΨJ= 3

2
,MJ= 1

2
(59)

The fractors
√

2/3 and
√

1/3 are known as Clebsch-Gordan coeffi-
cients.

16. Show that ΨJ= 3
2
,MJ= 1

2
has definite value of total angular momentum

j = 3/2, i.e. that

J2ΨJ= 3
2
,MJ= 1

2
=

[
L2 + S2 + 2LxSx + 2LySy + 2LzSz

]
ΨJ= 3

2
,MJ= 1

2
(60)

=
3

2

(
3

2
+ 1

)
~2 ΨJ= 3

2
,MJ= 1

2
(61)

• You may find that the following relations are helpful

Lx = i~
(

sinφ
∂

∂θ
+

cos(φ)

tan(θ)

∂

∂φ

)
(62)

Ly = i~
(
− cosφ

∂

∂θ
+

sin(φ)

tan(θ)

∂

∂φ

)
(63)

• Or just use the fact that

LxYlm =
1

2

√
`(`+ 1)−m(m+ 1)Ylm+1 (64)

+
1

2

√
`(`+ 1)−m(m− 1)Ylm−1 (65)

LyYlm =
−i
2

√
`(`+ 1)−m(m+ 1)Ylm+1 (66)

+
i

2

√
`(`+ 1)−m(m− 1)Ylm−1 (67)
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17. In class we have discussed how we can combine ` = 1 and s = 1
2

to
make states of definite J2 and Jz, thus the six states combine together
to make

j = `+ s, `+ s− 1, . . . , |`− s| (68)

=
3

2︸︷︷︸
4 states

,
1

2︸︷︷︸
2 states

(69)

Hopefully the previous excercise have made this procedure more than
numerology.
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