Assignment \# 4

We will consider the 3-dimensional harmonic oscillator.

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 M}+\frac{1}{2} K r^{2} \tag{1}
\end{equation*}
$$

with K the spring constant.

1. Warm-up. Starting from the equation

$$
\begin{equation*}
H \psi=E \psi \tag{2}
\end{equation*}
$$

and the rule $p_{x} \rightarrow-i \hbar \frac{\partial}{\partial x}$, Show that the Schrödinger Equation can be written

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 M} \nabla^{2}+\frac{1}{2} K r^{2}\right] \Psi=E \Psi \tag{3}
\end{equation*}
$$

2. Dimension-less variables. The dimension-full constants in this equation are

$$
\begin{equation*}
\hbar, M, K \tag{4}
\end{equation*}
$$

- Only one combination of these parameters has dimension of length. Determine this combination. Answer:

$$
\begin{equation*}
R_{o}=\left(\frac{\hbar^{2}}{M K}\right)^{1 / 4} \tag{5}
\end{equation*}
$$

- Only one combination of these has units of frequency. Determine this combination Answer:

$$
\begin{equation*}
\omega_{o}=\sqrt{\frac{K}{M}} \tag{6}
\end{equation*}
$$

- The only combination of parameters with dimension of energy is

$$
\begin{equation*}
\hbar \omega_{o} \tag{7}
\end{equation*}
$$

Express this amount energy in terms of K and R_{o}. Express this amount of energy \hbar, M, R_{o}.

- Introduce a bunch of dimensionless variables. For example

$$
\begin{align*}
\bar{r} & =r / R_{o} \tag{8}\\
\bar{E} & =E /\left(\hbar \omega_{o}\right) \tag{9}\\
\bar{\psi}(\bar{r}) & =R_{o}^{3 / 2} \psi(r) \tag{10}\\
\bar{\nabla}^{2} & =\frac{\partial^{2}}{\partial \bar{x}^{2}}+\frac{\partial^{2}}{\partial \bar{y}^{2}}+\frac{\partial^{2}}{\partial \bar{z}^{2}} \tag{11}
\end{align*}
$$

Show that

$$
\begin{equation*}
\int d^{3} \bar{r}|\psi(\bar{r})|^{2}=1 \tag{12}
\end{equation*}
$$

- With this set of units show that the Schrödinger equation can be written

$$
\begin{equation*}
\left[-\frac{1}{2} \bar{\nabla}^{2}+\frac{1}{2} \bar{r}^{2}\right] \psi=\bar{E} \bar{\psi} \tag{13}
\end{equation*}
$$

- After going through this excercise a bunch of times one realizes is that this is the same as saying

$$
\begin{equation*}
\hbar=K=M=1 \tag{14}
\end{equation*}
$$

- The condition that the particle be considered non-relativistic is

$$
\begin{equation*}
\left(\frac{v}{c}\right)^{2} \ll 1 \tag{15}
\end{equation*}
$$

Show that this condition can be written as a constraint that the oscillator energy $\hbar \omega_{o}$ be much less than the rest mass energy $m c^{2}$. (Hint what are the units of velocity.)
3. Angular momentum is

$$
\begin{equation*}
L_{z}=x p_{y}-y p_{x} \tag{16}
\end{equation*}
$$

Work in polar coordinates to show that

$$
\begin{equation*}
L_{z}=-i \hbar \frac{\partial}{\partial \phi} \tag{17}
\end{equation*}
$$

Using the relations $x=r \cos (\phi)$ and $y=r \sin (\phi)$, show that

$$
\begin{align*}
\frac{\partial}{\partial x} & =\cos (\phi) \frac{\partial}{\partial r}-\frac{\sin (\phi)}{r} \frac{\partial}{\partial \phi} \tag{18}\\
\frac{\partial}{\partial y} & =\sin (\phi) \frac{\partial}{\partial r}+\frac{\cos (\phi)}{r} \frac{\partial}{\partial \phi} \tag{19}
\end{align*}
$$

Then use the fact that

$$
\begin{align*}
p_{x} & =-i \hbar \frac{\partial}{\partial x} \tag{20}\\
p_{y} & =-i \hbar \frac{\partial}{\partial y} \tag{21}
\end{align*}
$$

To deduce L_{z} / \hbar. In a similar way it may be shown that be shown that

$$
\begin{equation*}
-\frac{L^{2}}{\hbar^{2}}=\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta} \sin (\theta) \frac{\partial}{\partial \theta}+\frac{1}{\sin (\theta)} \frac{\partial^{2}}{\partial \phi^{2}} \tag{22}
\end{equation*}
$$

4. Looking up ∇^{2} in spherical coordinates show that

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 M} \nabla^{2}=\underbrace{\frac{-\hbar^{2}}{2 M} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}}_{\text {radial KE }}+\underbrace{\frac{L^{2}}{2 M r^{2}}}_{\text {angular KE }} \tag{23}
\end{equation*}
$$

5. Use classical physics to show that the kinetic energy of a particle moving around in a circle is

$$
\begin{equation*}
K E=\frac{L_{\mathrm{cl}}^{2}}{2 M r^{2}} \tag{24}
\end{equation*}
$$

where $L_{\mathrm{cl}}=m v r$
6. Show that the three spherical harmonics for $\ell=1, Y_{\operatorname{lm}}(\theta, \phi)$

$$
\begin{align*}
Y_{10} & =\sqrt{\frac{3}{4 \pi}} \cos (\theta) \tag{25}\\
Y_{1 \pm 1} & =\mp \sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm i \phi} \tag{26}
\end{align*}
$$

Have definite definite total angular momentum and have definite angular momentum around the z axis, i.e. show by straight forward differentiation that

$$
\begin{align*}
& L^{2} Y_{l m}=\ell(\ell+1) \hbar^{2} Y_{l m} \tag{27}\\
& L_{z} Y_{l m}=m \hbar Y_{l m} \tag{28}
\end{align*}
$$

7. For the Schrödinger equation in Eq. ??, first rewrite the Laplace operator as in Eq. ??. Show that if one substitutes

$$
\begin{equation*}
\psi(r, \theta, \phi)=\frac{u_{\ell}(r)}{r} Y_{l m}(\theta, \phi) \tag{29}
\end{equation*}
$$

One obtains an equation for $u(r)$

$$
\begin{equation*}
\left[\frac{-\hbar^{2}}{2 M} \frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1) \hbar^{2}}{2 M r^{2}}+\frac{1}{2} K r^{2}\right] u(r)=E u(r) \tag{30}
\end{equation*}
$$

8. Show that the norm condition

$$
\begin{equation*}
\int d^{3} r|\psi|^{2}=1 \tag{31}
\end{equation*}
$$

Becomes a condition on $u(r)$

$$
\begin{equation*}
\int_{0}^{\infty} d r|u(r)|^{2}=1 \tag{32}
\end{equation*}
$$

Use the fact that

$$
\begin{equation*}
\int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \sin (\theta)\left|Y_{l m}\right|^{2}=1 \tag{33}
\end{equation*}
$$

9. Show that in terms of "barred" variables this radial Schrödinger equation becomes

$$
\begin{equation*}
\left[\frac{-1}{2} \frac{d^{2}}{d \bar{r}^{2}}+\frac{\ell(\ell+1)}{2 \bar{r}^{2}}+\frac{1}{2} \bar{r}^{2}\right] u(\bar{r})=\bar{E} u(\bar{r}) \tag{34}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{u}_{\ell}(\bar{r})=R_{o}^{1 / 2} u(r) \tag{35}
\end{equation*}
$$

10. This equation always has solutions. Only for particular values of the energy does this solution decay to zero for $r \rightarrow \infty$. We label these energies as $E_{n} n=0,1,2 \ldots$. The radial wave functions $u(r)$ depend on what is \bar{E}_{n} and ℓ we therefore denote these as

$$
\begin{equation*}
\bar{u}_{n, \ell}(\bar{r}) \tag{36}
\end{equation*}
$$

- For every n the energies are

$$
\begin{equation*}
\bar{E}_{n}=\frac{E_{n}}{\hbar \omega_{o}}=n+\frac{3}{2} \tag{37}
\end{equation*}
$$

The $\frac{3}{2} \hbar \omega_{o}$ is the zero point energy
For every n, ℓ takes on the values

$$
\begin{equation*}
\ell=n, n-2, \ldots 1 \text { or } 0 \tag{38}
\end{equation*}
$$

The lowest energy eigen-functions and there (dimensonless) eigenvalues are

$$
\begin{equation*}
u_{n, \ell}=C \bar{r}^{\ell+1} e^{-\frac{\bar{r}^{2}}{2}} P_{n, \ell}(\bar{r}) \tag{39}
\end{equation*}
$$

where $P_{n, \ell}(r)$ is a polynomial

$$
\begin{align*}
P_{0,0}(r) & =1 \tag{40}\\
P_{1,1}(r) & =1 \tag{41}\\
P_{2,2}(r) & =1 \tag{42}\\
P_{2,0}(r) & =\frac{3}{2}-r^{2} \tag{43}\\
P_{3,3}(r) & =1 \tag{44}\\
P_{3,1}(r) & =\frac{5}{2}-r^{2} \tag{45}
\end{align*}
$$

- Verify that $n=1, \bar{u}_{1,1}$ is in fact a solution to the dimensionless Schrödinger equation Eq. 34 with the correct eigen-energy \bar{E}_{n}. Without using dimensionless variables this excercise would quickly degenerate into a morass of symbols.

11. The wave function is actually a doublet

$$
\begin{equation*}
\Psi=\binom{\psi_{+}(\mathbf{r})}{\psi_{-}(\mathbf{r})} \tag{46}
\end{equation*}
$$

Everything that we did in the previous section applies for ψ_{+}and ψ_{-} separately.

$$
\begin{equation*}
\left|\psi_{+}\right|^{2}=\text { the probability to have spin up } \tag{47}
\end{equation*}
$$

The spin operators act in this 2×2 doublet space

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \tag{48}\\
1 & 0
\end{array}\right) \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

12. Show that

$$
\begin{equation*}
\Psi=\psi(r, \theta, \phi)\binom{1}{0} \tag{49}
\end{equation*}
$$

has spin $\hbar / 2$ in the z direction.
13. Determine the spin wave function

$$
\begin{equation*}
\Psi=\psi(r, \theta, \phi)\binom{a}{b} \tag{50}
\end{equation*}
$$

which has definite spin of $+\hbar / 2$ in the y direction. That is: (1) determine the eigen-values and and eigen-vectors of S_{y} (2) One of the eigen-values is $+\hbar / 2$ determine the corresponding eigen vector.
14. For definiteness consider $\ell=1$, the six states

$$
\begin{equation*}
f(r)\binom{Y_{l m}(\theta, \phi)}{0} \quad f(r)\binom{0}{Y_{l m}(\theta, \phi)} \tag{51}
\end{equation*}
$$

with $m=-1,0,1$ are spin $\frac{1}{2}$. Show this by showing that showing that they are eigensates of

$$
\begin{equation*}
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2} \tag{52}
\end{equation*}
$$

with eigenvalue

$$
\begin{equation*}
s(s+1) \hbar^{2}=\frac{3}{4} \hbar^{2} \tag{53}
\end{equation*}
$$

Similarly, they have orbital angular momentum 1 by since

$$
\begin{align*}
L^{2}\left[f(r)\binom{Y_{l m}(\theta, \phi)}{0}\right] & =f(r)\binom{L^{2} Y_{l m}(\theta, \phi)}{0} \tag{54}\\
& =f(r)\binom{\ell(\ell+1) \hbar^{2} Y_{l m}(\theta, \phi)}{0} \tag{55}\\
& =\ell(\ell+1) \hbar^{2}\left[f(r)\binom{Y_{l m}(\theta, \phi)}{0}\right] \tag{56}
\end{align*}
$$

15. These six states recombine to become eigenstates of definite total angular momentum squared, J^{2} and J_{z}. The total angular momentum is

$$
\begin{equation*}
\mathbf{J}=\mathbf{L}+\mathbf{S} \tag{57}
\end{equation*}
$$

For instance show that by mixing together two of these state

$$
\begin{equation*}
\Psi_{J=\frac{3}{2}, M_{J}=\frac{1}{2}}=\sqrt{\frac{2}{3}}\binom{Y_{10}}{0}+\sqrt{\frac{1}{3}}\binom{0}{Y_{11}} \tag{58}
\end{equation*}
$$

One obtains a state with definite value of J_{z}, i.e. show that

$$
\begin{equation*}
\left(L_{z}+S_{z}\right) \Psi_{J=\frac{3}{2}, M_{J}=\frac{1}{2}}=+\frac{\hbar}{2} \Psi_{J=\frac{3}{2}, M_{J}=\frac{1}{2}} \tag{59}
\end{equation*}
$$

The fractors $\sqrt{2 / 3}$ and $\sqrt{1 / 3}$ are known as Clebsch-Gordan coefficients.
16. Show that $\Psi_{J=\frac{3}{2}, M_{J}=\frac{1}{2}}$ has definite value of total angular momentum $j=3 / 2$, i.e. that

$$
\begin{align*}
J^{2} \Psi_{J=\frac{3}{2}, M_{J}=\frac{1}{2}} & =\left[L^{2}+S^{2}+2 L_{x} S_{x}+2 L_{y} S_{y}+2 L_{z} S_{z}\right] \Psi_{J=\frac{3}{2}, M_{J}=\frac{6}{2}}(60) \\
& =\frac{3}{2}\left(\frac{3}{2}+1\right) \hbar^{2} \Psi_{J=\frac{3}{2}, M_{J}=\frac{1}{2}} \tag{61}
\end{align*}
$$

- You may find that the following relations are helpful

$$
\begin{gather*}
L_{x}=i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\frac{\cos (\phi)}{\tan (\theta)} \frac{\partial}{\partial \phi}\right) \tag{62}\\
L_{y}=i \hbar\left(-\cos \phi \frac{\partial}{\partial \theta}+\frac{\sin (\phi)}{\tan (\theta)} \frac{\partial}{\partial \phi}\right) \tag{63}
\end{gather*}
$$

- Or just use the fact that

$$
\begin{align*}
L_{x} Y_{l m}= & \frac{1}{2} \sqrt{\ell(\ell+1)-m(m+1)} Y_{l m+1} \tag{64}\\
& +\frac{1}{2} \sqrt{\ell(\ell+1)-m(m-1)} Y_{l m-1} \tag{65}\\
L_{y} Y_{l m}= & \frac{-i}{2} \sqrt{\ell(\ell+1)-m(m+1)} Y_{l m+1} \tag{66}\\
& +\frac{i}{2} \sqrt{\ell(\ell+1)-m(m-1)} Y_{l m-1} \tag{67}
\end{align*}
$$

17. In class we have discussed how we can combine $\ell=1$ and $s=\frac{1}{2}$ to make states of definite J^{2} and J_{z}, thus the six states combine together to make

$$
\begin{align*}
j & =\ell+s, \ell+s-1, \ldots,|\ell-s| \tag{68}\\
& =\underbrace{\frac{3}{2}}_{4 \text { states }}, \underbrace{\frac{1}{2}}_{\text {states }} \tag{69}
\end{align*}
$$

Hopefully the previous excercise have made this procedure more than numerology.

