$$
27.3,27.15,27.39
$$

The underlined problems should be turned in for grading.

- For two conductors with have charge Q on either conductor, the potential difference between them is ΔV, and the capacitance is the proportionality constant

$$
\begin{equation*}
C \Delta V=Q \tag{3}
\end{equation*}
$$

- The capacitance for various charged objects can be computed by distributing the charge, computing the electric field, the potential difference between the charged objects, and finally comparing Q and ΔV. The result depends only on the geometry

1. For two plates of area A and separation d the capacitance is

$$
\begin{equation*}
C=\epsilon_{o} \frac{A}{d} \tag{4}
\end{equation*}
$$

2. For a coaxial cable of length L with inner radius a and outer radius b the Capacitance is

$$
\begin{equation*}
C=\frac{L}{2 k_{e} \ln (b / a)} \tag{5}
\end{equation*}
$$

with $k_{e}=1 /\left(4 \pi \epsilon_{o}\right)$
3. For a sphere of radius R with the second sphereical conductor at infinity

$$
\begin{equation*}
C=4 \pi \epsilon_{o} R \tag{6}
\end{equation*}
$$

- For capacitors in parallel the equivalent capacitance of the circuit is

$$
\begin{equation*}
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\ldots \tag{7}
\end{equation*}
$$

For capacitors in series the equivalent capacitance of the circuit

$$
\begin{equation*}
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots \tag{8}
\end{equation*}
$$

- Energy is stored in a capacitor as charged is transfered from one side to another. At the end of this process the energy is

$$
\begin{equation*}
U=\frac{1}{2} C(\Delta V)^{2}=\frac{Q^{2}}{2 C} \tag{9}
\end{equation*}
$$

This energy is stored in the electric field in between the plates. The energy per unit volume is proportional to the electric field squared

$$
\begin{equation*}
\frac{U}{\mathrm{Vol}}=\frac{1}{2} \epsilon_{o} E^{2} \tag{10}
\end{equation*}
$$

- When a dialectric is placed between two charged slabs, the electric field inside the slabs E is less than it would have been in vacuum E_{o}.

$$
\begin{equation*}
E=\frac{E_{o}}{\kappa} \tag{11}
\end{equation*}
$$

The electric field is decreased because there is an induced surface charge $\sigma_{\text {ind }}$ on the dialectric material.

$\sigma_{\text {ind }}$ can be related to charge density on the plates σ_{o} and the dialectric constant κ.

$$
\begin{equation*}
\sigma_{\mathrm{ind}}=\left(1-\frac{1}{\kappa}\right) \sigma_{o} \tag{12}
\end{equation*}
$$

When a dialectric is introduced the capacitance C is increased to what it would have been without the dialectric C_{o}

$$
\begin{equation*}
C=\kappa C_{o} \tag{13}
\end{equation*}
$$

- An the electric dipole moment is

$$
\begin{equation*}
p \equiv 2 a q \tag{14}
\end{equation*}
$$

and points from the negative to the postive charge as shown below

When a dipole is placed into an electric field it will try to rotate its dipole moment in the direction of the field. There is no net force but there is a net torque.

$$
\begin{equation*}
\tau=\mathbf{p} \times \mathbf{E} \tag{15}
\end{equation*}
$$

The potential energy of a dipole in an external field is

$$
\begin{equation*}
U=-\mathbf{p} \cdot \mathbf{E} \tag{16}
\end{equation*}
$$

The potential energy is smallest when the dipole is aligned with the field.

