Lab: Standing Waves on a String

I. DATA COLLECTION

- Hang diferent masses from the standing wave apparatus as demonstrated in class. When the mass is just right you should see a nodal pattern. Construct the following table

\# of nodes	$\lambda(\mathrm{m})$	Mass (kg)
4		
5		
etc		

II. ANALYSIS

1. Using $v=\lambda f$ and the fact that the tension is $T=M g$, with $f=120 \mathrm{~Hz}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, construct the following table

\# of nodes	$v^{2}(\mathrm{~m} / \mathrm{s})$	$T(\mathrm{~N})$
4		
5		
etc		

2. Using the equation

$$
v=\sqrt{\frac{T}{\mu}}
$$

argue that if tension is on the y axis and v^{2} is on the x axis the slope of this line should be the mass density μ.
3. Make a graph of T vs. v^{2} using the plotting package. Perform a fit of this line to determine the slope - the intercept should be constrained to zero. The slope is a measurement of the mass density.
4. Measure the mass density μ directly by measuring the mass and length of a similar string:

$$
M_{\text {string }}=\quad L_{\text {string }}=
$$

5. Determine the percent difference between part 3 and part 4 .
