Coulomb law

$$
\begin{gather*}
\mathbf{F}=k_{e} \frac{Q_{1} Q_{2}}{r^{2}}, \hat{\mathbf{r}} \tag{1}\\
k_{e}=\frac{1}{4 \pi \epsilon_{o}}=8.98 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \tag{2}\\
\epsilon_{o}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{Nm}^{2}\right) \tag{3}\\
\mathbf{E}=\frac{\mathbf{F}}{q_{o}} \tag{4}
\end{gather*}
$$

For a point charge

$$
\begin{equation*}
\mathbf{E}=k_{e} \frac{Q}{r^{2}} \hat{\mathbf{r}} \tag{5}
\end{equation*}
$$

For field lines

$$
\begin{gather*}
E \propto \frac{\# \text { of lines }}{\text { Area }} \tag{6}\\
\mathbf{a}=\frac{q \mathbf{E}}{m} \tag{7}
\end{gather*}
$$

Gauss Law

$$
\begin{align*}
\Phi_{E} & =\int \mathbf{E} \cdot d \mathbf{A} \tag{8}\\
& =\mathbf{E} \cdot \mathbf{A} \quad \text { for constant field } \tag{9}\\
& =E A \cos (\theta) \quad \text { for constant field } \tag{10}\\
& \quad \Phi_{E}=4 \pi k_{e} Q_{\mathrm{net}} \tag{11}\\
& =\frac{Q_{\mathrm{net}}}{\epsilon_{o}} \tag{12}
\end{align*}
$$

1. Uniformly Charged slab.

$$
\begin{equation*}
E=\frac{\sigma}{2 \epsilon_{o}} \tag{13}
\end{equation*}
$$

2. Two charged slabs

$$
E= \begin{cases}\frac{\sigma}{\epsilon_{o}} & \text { Inbetween the plates } \tag{14}\\ 0 & \text { Outside the plates }\end{cases}
$$

3. The electric field from a long line of charge

$$
\begin{equation*}
E_{r}=\frac{2 k_{e} \lambda}{r} \tag{15}
\end{equation*}
$$

4. The electric field from a uniformly charged insulating sphere with total charge Q and radius R,

$$
E_{r}=\left\{\begin{array}{cl}
\frac{k_{e} Q}{r^{2}} & \text { for } r>R \tag{16}\\
\frac{k_{e} Q}{R^{2}} \frac{r}{R} & \text { for } r<R
\end{array}\right.
$$

5. The electric field from a uniformly charged conducting sphere with total charge Q and radius R,

$$
E_{r}=\left\{\begin{array}{cc}
\frac{k_{Q} Q}{r^{2}} & \text { for } r>R \tag{17}\\
0 & \text { for } r<R
\end{array}\right.
$$

$$
\begin{equation*}
\Delta V=V_{B}-V_{A}=-\int_{A}^{B} \mathbf{E} \cdot d \mathbf{x} \tag{18}
\end{equation*}
$$

For a constant electric field E_{z} in the z direction

$$
\begin{gather*}
\Delta V=-\mathbf{E} \cdot \mathbf{d} \tag{19}\\
 \tag{20}\\
=-E_{z} d \cos (\theta) \tag{21}\\
 \tag{22}\\
=-E_{z} z \\
W_{A B}^{\mathrm{you}}=U_{B}
\end{gather*} U_{A}=q\left(V_{B}-V_{A}\right) \quad .
$$

or

$$
\begin{equation*}
\Delta U=q \Delta V \tag{23}
\end{equation*}
$$

For a point charge

$$
\begin{equation*}
V(r)=\frac{k_{e} Q}{r} \tag{24}
\end{equation*}
$$

$$
\begin{gather*}
W^{\mathrm{you}}=U=k_{e} \frac{q_{1} q_{2}}{r_{12}}+k_{e} \frac{q_{2} q_{3}}{r_{23}}+k_{e} \frac{q_{1} q_{3}}{r_{13}} \tag{25}\\
E_{z}=-\frac{\partial V(z)}{\partial z} \tag{26}\\
E_{r}=-\frac{\partial V(r)}{\partial r} \tag{27}\\
E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z} \tag{28}\\
V=\sum k_{e} \frac{\Delta q}{r}=\int k_{e} \frac{d q}{r} \tag{29}
\end{gather*}
$$

1. Uniformly charged insulating sphere with charge Q and radius R

$$
V(r)=\left\{\begin{array}{cc}
\frac{k_{e} Q}{r} & \text { for } r>R \tag{30}\\
\frac{k_{e} Q}{2 R}\left(3-r^{2} / R\right) & \text { for } r<R
\end{array}\right.
$$

2. Conducting Sphere with charge Q and radius R

$$
V(r)= \begin{cases}\frac{k_{e} Q}{r} & \text { for } r>R \tag{31}\\ \frac{k_{e} Q}{R} & \text { for } r<R\end{cases}
$$

3. The potential of a charged disc of radius a

$$
\begin{equation*}
V=2 \pi k_{e} \sigma\left(\sqrt{x^{2}+a^{2}}-x\right) \tag{32}
\end{equation*}
$$

4. For a ring of radius a

$$
\begin{equation*}
V=k_{e} \frac{Q}{\sqrt{x^{2}+a^{2}}} \tag{33}
\end{equation*}
$$

Capacitance

$$
\begin{equation*}
C \Delta V=Q \tag{34}
\end{equation*}
$$

1. For two plates of area A and separation d the capacitance is

$$
\begin{equation*}
C=\epsilon_{o} \frac{A}{d} \tag{35}
\end{equation*}
$$

2. For a coaxial cable of length L with inner radius a and outer radius b the Capacitance is

$$
\begin{equation*}
C=\frac{L}{2 k_{e} \ln (b / a)} \tag{36}
\end{equation*}
$$

with $k_{e}=1 /\left(4 \pi \epsilon_{o}\right)$
Parallel:

$$
\begin{equation*}
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\ldots \tag{37}
\end{equation*}
$$

Series:

$$
\begin{gather*}
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots \tag{38}\\
U=\frac{1}{2} C(\Delta V)^{2}=\frac{Q^{2}}{2 C} \tag{39}\\
\frac{U}{\mathrm{Vol}}=\frac{1}{2} \epsilon_{o} E^{2} \tag{40}\\
E=\frac{E_{o}}{\kappa} \tag{41}\\
\sigma_{\text {ind }}=\left(1-\frac{1}{\kappa}\right) \sigma_{o} \tag{42}\\
C=\kappa C_{o} \tag{43}\\
p \equiv 2 a q \tag{44}\\
\tau=\mathbf{p} \times \mathbf{E} \tag{45}\\
U=-\mathbf{p} \cdot \mathbf{E} \tag{46}
\end{gather*}
$$

Currents and Circuits

$$
\begin{equation*}
I=\frac{d Q}{d t}=\frac{\text { Charge passing through surface } A}{\Delta t} \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
V=I R \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{P}=I^{2} R \tag{49}
\end{equation*}
$$

$$
\begin{gather*}
\mathbf{J}=\frac{I}{A}=n q \mathbf{v}_{d} \tag{50}\\
\mathbf{J}=\sigma \mathbf{E} \tag{51}\\
\rho=\frac{1}{\sigma} \tag{52}\\
R=\rho \frac{\ell}{A} \tag{53}
\end{gather*}
$$

Series

$$
\begin{equation*}
R_{e q}=R_{1}+R_{2} \ldots \tag{54}
\end{equation*}
$$

Resistors in ||

$$
\begin{equation*}
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \ldots \tag{55}
\end{equation*}
$$

Kirchoff Laws

1. For each wire indicate a current with an arrow
2. The sum of the currents entering a vertex is zero. Thus in Fig 4. the sum of the vertex

$$
\begin{equation*}
I_{1}+\left(-I_{2}\right)+\left(-I_{3}\right)=0 \tag{56}
\end{equation*}
$$

where we have written $\left(-I_{2}\right)$ and $\left(-I_{3}\right)$ because these currents are drawn exiting rather than entering the vertex.
3. For every closed loop, draw a circle and indicate the loop direction. The sum of the potential drops going around the loop is zero.

$$
\begin{equation*}
\sum \Delta V=0 \tag{57}
\end{equation*}
$$

(a) If the current is moving with loop direction (Fig. 5) the voltage drop across the resistor is

$$
\begin{equation*}
(\Delta V)_{\mathrm{R}}=-I R \tag{58}
\end{equation*}
$$

If the current and loop direction are opposite get $+I R$
(b) If the loop direction is the with the battery (Fig. 3) the voltage change is

$$
\begin{equation*}
(\Delta V)_{\mathscr{E}}=+\mathscr{E} \tag{59}
\end{equation*}
$$

If the loop and battery are opposite $-\mathscr{E}$
(c) For each capacitor if the loop direction is in the same as the current direction (Fig. 1) the voltage drop is

$$
\begin{equation*}
(\Delta V)_{C}=-\frac{q}{C} \tag{60}
\end{equation*}
$$

where q is the charge on the capacitor and C is the capacitance. If current and loop direction are opposite get $+q / C$.

Capacitor Charging

$$
\begin{align*}
q(t) & =Q\left(1-e^{-\frac{t}{R C}}\right) \tag{61}\\
I(t) & =\frac{\mathscr{E}}{R} e^{-\frac{t}{R C}} \tag{62}
\end{align*}
$$

with

- $Q=C \mathscr{E}$.
- $I_{o}=\mathscr{E} / R$.

$$
\begin{equation*}
\tau=R C \tag{63}
\end{equation*}
$$

Capacitor Discharging

$$
\begin{equation*}
q(t)=Q e^{-\frac{t}{R C}} \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
I(t)=-I_{o} e^{-\frac{t}{R C}} \tag{65}
\end{equation*}
$$

with $I_{o}=Q / R C$.

Forces and Magnetic Fields

$$
\begin{equation*}
\mathbf{F}=q \mathbf{v} \times \mathbf{B} \tag{66}
\end{equation*}
$$

$$
\begin{equation*}
r=\frac{m v}{q B} \tag{67}
\end{equation*}
$$

$$
\begin{equation*}
d \mathbf{F}=I d \mathbf{L} \times \mathbf{B} \tag{68}
\end{equation*}
$$

For a uniform magnetic field

$$
\begin{equation*}
\mathbf{F}=I \mathbf{L}_{C D} \times \mathbf{B} \tag{69}
\end{equation*}
$$

where $\mathbf{L}_{C D}$ is the line connecting C to D. A corrlary is that a closed loop in a uniform magnetic field experiences no net force (it does experience a torque though).

$$
\begin{equation*}
=I \mathbf{A} \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
\tau=\mu \times \mathbf{B} \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
U=-\mu \cdot \mathbf{B}=-\mu B \cos (\theta) \tag{72}
\end{equation*}
$$

