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1 Electrostatics

1.1 A charge in a rectangular tube

Consider a point charge placed in an infinitely long grounded rectangular tube as shown
below. The sides of the square cross subsectional area of the tube have length a.

b

a

1. (2 points) Show that the solutions to the homogeneous Laplace equation (i.e. without
the extra point charge) are linear combinations of functions of the form

Φ(kxz) Φ(kyy) e±κzz where Φ(u) =
{

cos(u) or sin(u) (1)

for specific values of kx, ky and κz. Determine the allowed the values of kx, ky and κz
and their associated functions.
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2. (4 points) Now consider a point charge displaced from the center of the tube by a
distance b in the x direction, i.e. the coordinatess of the charge are ro = (x, y, z) =
(b, 0, 0). Use the method of images to determine the potential.

3. (7 points) As an alternative to the method of images, use a series expansion in terms
of the homogeneous solutions of part (a) to determine the potential from the point
charge described in part (b).

4. (7 points) Determine the asymptotic form of the surface charge density, and the force
per area on the walls of the rectangular tube far from the point charge, i.e. z � a.
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Solution

1. The Laplace equation is
−∇2ϕ = 0 (2)

Separating variables with ϕ = X(x)Y (y)Z(z) we must have

−d
2X

dx2
=k2

xX (3a)

−d
2Y

dy2
=k2

yY (3b)

−d
2Z

dz2
=k2

zZ (3c)

In order to satisfy Eq. (2), the separation constants satisfy

k2
x + k2

y + k2
z = 0 (4)

and thus
d2Z

dz2
= κ2Z with κ =

√
k2
x + k2

y (5)

The solutions to Eq. (3a) may be either sin or cos

X(x) = Φ(kxx) , (6)

with kx at this point still arbitrary. In order to satisfy the boundary conditions
X(±a/2) = 0, we require for the cos functions that

kxa/2 = (n+ 1
2
)π . (7)

Similarly, for the sin functions
kxa/2 = nπ . (8)

Thus, the general form is

Xn(x) = Φn(knx) n = 0, 1, . . . (9)

with kn = (n+ 1)π/a and

Φn(u) =

{
cos(u) n even

sin(u) n odd
. (10)

The Y (y) direction follows by analogy

Ym(y) Φm(kmx) m = 0, 1, . . . (11)

with km = (m+ 1)π/a The solutions to the z direction are

Z(z) = e±κz κ =
√
k2
n + k2

m (12)

3



Figure 1: Arrangement of image charges. The black charges idicate plus charges, while the
white charges indicate negative charges. The origin of coordinates is indicated with the
dashed lines. The real charge is displaced by a distance b from the origin.

2. The image charges may be placed in a rectangular lattice as shown below. Their are
four types of charges with coordinates

r1(n,m) =(b+ 2na)x̂+ 2maŷ (13)

r2(n,m) =((2n+ 1)a− b)x̂+ 2maŷ (14)

r3(n,m) =(b+ 2na)x̂+ (2m+ 1)aŷ (15)

r4(n,m) =((2n+ 1)a− b)x̂+ (2m+ 1)aŷ (16)

where n,m are integers. Then the potential is

φ(r) =
q

4π

∞∑
n,m=0

1

|r − r1(n,m)|−
1

|r − r2(n,m)|−
1

|r − r3(n,m)|+
1

|r − r4(n,m)| (17)

3. For the potential at r due to a point charge at ro = (b, 0, 0), we expand the potential
as

φ(r; ro) =

(
2

a

)2 ∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0) gn,m(z) (18)

and substitute into the Poisson equation

−∇2ϕ(r; ro) = qδ(x− b)δ(y)δ(z) . (19)
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The leading factors (2/a)2 arise from the fact that we have not normalized the eigen-
functions X and Y ∫ a/2

−a/2
dxXn(x)Xn′(x) =

a

2
δn,n′ (20)∫ a/2

−a/2
dy Ym(y)Ym′(y) =

a

2
δm,m′ (21)

If gn,m(z) satisfies (
k2
n + k2

m −
∂2

∂z2

)
gn,m(z) = qδ(z) , (22)

then using the completeness relation

2

a

∑
n

Xn(x)Xn(xo) =δ(x− xo) (23)

2

a

∑
m

Ym(x)Ym(xo) =δ(y − yo) (24)

it is not difficult to show that Eq. (19) is satisfied.

The solution to Eq. (22) is

gn,m(z) =

{
Ae−κn,mz z > 0

Aeκn,mz z < 0
(25)

Integrating across the δ-fcn in Eq. (22) we have

− dg

dz

∣∣∣∣
z=0+

+
dg

dz

∣∣∣∣
0−

= q (26)

With this requirement A = q
2κn,m

and

φ(r; ro) =
4q

a2

∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0)
e−κn,m|z|

2κn,m
(27)

4. At asymptotic distances the terms with the smallest κn,m dominate the sum. We then
have only the contribution from n = m = 0 mode, and

κ0,0 =
√

2π/a . (28)

The potential reads

φ(r; ro) '
4q

a2
cos(πx/a) cos(πb/a) cos(πy/a)

e−κ0,0|z|

2κ0,0

(29)
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or

φ(r; ro) '
√

2q

πa
cos(πx/a) cos(πb/a) cos(πy/a)e−

√
2π|z|/a (30)

Let us calculate the charge density on the bottom plate

σ = n ·E = −∂yφ|y=−a/2 , (31)

=−
√

2q

a2
cos(πx/a) cos(πb/a) e−

√
2π|z|/a . (32)

Finally, the force per area on the bottom plate is

F y

A
=
σ2

2
, (33)

=
q2

a4
cos2(πx/a) cos2(πb/a) e−2

√
2π|z|/a . (34)

The direction of the force is into the tube. The other walls of the tube have the same
force per area.
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2 Magnetostatics

2.1 A magnetized sphere and a circular hoop

A uniformly magnetized sphere of radius a centered at origin has a permanent total magnetic
moment m = m ẑ pointed along the z-axis (see below). A circular hoop of wire of radius b
lies in the xz plane and is also centered at the origin. The hoop circles the sphere as shown
below, and carries a small current Io (which does not appreciably change the magnetic field).
The direction of the current Io is indicated in the figure.

Io

z

x

y

1. Determine the magnetic field B inside and outside the magnetized sphere.

2. Determine the bound surface current on the surface of the sphere.

3. What is the direction of the net-torque on the circular hoop? Indicate on the figure
how the circular hoop will tend to rotate and explain your result.

4. Compute the net-torque on the circular hoop.

7



Solution

1. The magnetic field outside is one of a magnetic dipole, where all of magnetic moment
is placed at the origin

B =
1

4πr3
[3(m · r̂)r̂ −m] (35)

Inside sphere, the magnetic field is constant

B = Bo ẑ (36)

The constant Bo can be picked off from the boundary conditions.

The boundary conditions read

n× (B2 −B1) =
Kb

c
(37)

n · (B2 −B1) =0 (38)

Then from the boundary conditions at r = a

Br|out = Br|in . (39)

With the magnetic field outside the sphere

Br|out =
1

4πr3
2m cos θ , (40)

and inside the sphere
r̂ ·B|in = Bo r̂ · ẑ = Bo cos θ , (41)

comparison at r = a gvies

Bo =
1

4πa3
2m. (42)

For later reference we note that with M = m/(4πa3/3)

Ho = Bo −M = − m

4πa3
(43)

2. The surface current is in the azimuthal direction

K = Ko φ̂ (44)

Inside we have
B = Boẑ = Bo cos θ r̂ −Bo sin θ θ̂ , (45)

while outside we have

B =
1

4πr3
2m cos θ r̂ +

1

4πr3
m sin θ θ̂ . (46)

Then the jump condition reads

Bθ,out −Bθ,in =
Ko

c
. (47)
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Thus

Ko = c

(
1

4πa3
m+Bo

)
sin θ =

3c

4πa3
m sin θ (48)

One can verify using eq. (43)

Hθ,out −Hθ,in =

(
1

4πr3
m sin θ +Ho sin θ

)
= 0 (49)

as should be the case since H is continuous in the absence of external macroscopic
currents.

3. To compute the torque we first compute the lorentz force on a element of length
d` = bdθ.

dF =
Io
c
d`B⊥ (50)

=
Io
c
bdθ Br (51)

=
Io
c
bdθ

2m cos θ

4πb3
(52)

The right hand rule indicates that the force is in the −ŷ direction in the upper hemi-
sphere, and in the positive ŷ direction in the lower hemisphere. This implies that the
net torque points along the x-axis. This can be intuited by noting that the magnetic
moment of the hoop tends to align with the magnetic field from the sphere

4. The torque around the x-axis

τ =

∫
dτ =

∫
b cos θ dF (53)

=2

∫ π

0

b cos θ
Io
c
bdθ

2m cos θ

4πb3
(54)

=
4m(Io/c)b

2

4πb3

∫ π

0

dθ cos2 θ (55)

=
4m(Io/c)b

2

4πb3

π

2
(56)

=
2m

4πb3

[
Io
c
πb2

]
(57)
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3 Quasi statics

3.1 A ring and a sphere in a magnetic field

A sphere of radius a with magnetic permeability µ is placed in an external slowly varying
(homogeneous) magnetic field, Bext(t) = Bo(t) ẑ = B cos(ωt)ẑ. Placed above the sphere at
height zo is an ohmic ring of radius b and resistance R. The center of the ring coincides with
the z-axis and the plane of the ring points along the z-axis (see below).

a

zo

x

y

z

b

(a) (6 points) The induced magnetic moment of the sphere is proporitonal to the external
field

m = αBBext . (58)

Determine the polarizability, αB. Neglect the fields from the currents induced in the
ring.

(Hint: recall that for a permeable sphere in a constant external magnetic field, the
magnetic field outside the sphere is that of an induced magnetic dipole plus the external
field, while the magnetic field inside the sphere is constant, Bin = Bin ẑ. Determine
αB and Bin from the appropriate boundary conditions at the surface of the sphere.)

(b) (6 points) Determine the current induced in the ring.

(c) (2 points) Under what conditions can the induced magnetic fields from the ring be
neglected in part (a)?

(d) (6 points) Determine the force on the ring.
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Solution

(a) The boundary conditions read

n× (Hout −Hin) =0 (59)

n · (Bout −Bin) =0 (60)

In terms of components

Hθ,out −Hθ,in =0 (61)

Br,out −Hr,in =0 (62)

With the magnetic field of a dipole

Bout =Bo ẑ +
3r̂(r̂ ·m)−m

4πr2
(63)

Bin =Bo ẑ +
3r̂(r̂ ·m)−m

4πr2
(64)

we see that

Br,out =
2m cos θ

4πa3
+Bo cos θ (65)

Hθ,out =
m sin θ

4πa3
−Bo sin θ (66)

Inside we have

Br in =Bin cos θ (67)

Hθ in =− 1

µ
Bin sin θ (68)

Putting together the ingredients we have

m

4πa3
−Bo +

Bin

µ
=0 (69)

2m

4πa3
+Bo −Bin =0 (70)

Solving these equation for m and Bin we get

m =Bo(4πa
3)
µ− 1

2 + µ
(71)

Bin =Bo
3µ

2 + µ
(72)

(b) The flux through the loop has two contributions: the external magnetic field and the
induced dipole. The external dipole contribution is simply

ΦB,ext = Bo(t)πb
2 . (73)
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The dipole contribution is most easily found using the vector potential

ΦB,dip =

∫
B · da =

∮
A · d` . (74)

With the vector potential of the dipole

A =
m× r̂
4πr2

(75)

we have

Aφ =
m sin θ

4π(z2 + b2)
(76)

So with sin θ = b/
√
z2 + b2 we have

ΦB,dip =
m(t)

2

b2

(z2 + b2)3/2
(77)

=αB
Bo(t)

2

b2

(z2 + b2)3/2
(78)

Thus the magnetic current is

I(t) = − 1

cR∂tΦB(t) (79)

Or

I(t) =
−Ḃo(t)πb

2

cR

[
1 +

αB
2π

1

(z2 + b2)3/2

]
(80)

(c) The current in the loop produces a field at the sphere of order I(t)/[c(b2 + z2)1/2]. We
should compare this field to Bo, yielding the condition:

ωBoπb
2

c2R
1

(z2 + b2)1/2
� Bo . (81)

Taking b and z the same order of magnitude b ∼ z as drawn in the figure,

ωπb

2πc2R � 1 . (82)

This is the answer.

It is useful to interpret the answer. The resistance is R = 2πb/(σA) where A is the
cross subsection of the wire and σ is the conductivity, yielding

ωσ

4πc2
A� 1 . (83)

Recognizing the magnetic diffusion coefficient D=c2/σ of the wire and the skin depth
δ(ω) ∼

√
D/ω, we rewrite the condition as

A

πδ2(ω)
� 1 . (84)

Thus the skin depth δ should be much longer than the diameter (or thickness) of the
wire.
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(d) For the force we have the contribution of the constant field Bo and the field of the
sphere Bdip.

Using the right hand rule we see that the constant field produces no net force. All the
forces of from the static field lie in the plane of the loop, tending to deform the ring
but providing no net force.

From the dipole we have the Lorentz force

F z =

∫
bdφ

I(t)

c
ẑ · (φ̂×Bdip) . (85)

With the diople field,

Bdip =
3r̂ · (r̂ ·m)−m

4πr3
, (86)

the magnetic moment m(t) = αBBo(t)ẑ, the cross products

ẑ · (φ̂× r̂) = ẑ · θ̂ = − sin θ , (87)

ẑ · (φ̂× ẑ) = 0 , (88)

we find

F z = −
∫
bdφ I(t)/c

3 sin θ cos θm(t)

4π(z2
o + b2)3/2

(89)

Thus

F z =

(
−I(t)Bo(t)b

c

)
3

4

sin(2θ)αB
(z2
o + b2)3/2

(90)

This is the answer after substituting the results of part (b).

After minor manipulations we find

F z =

(
dB2

o(t)

dt

πb3

c2R

)
3

8

sin(2θ)αB
(z2
o + b2)3/2

[
1 +

αB
2π(z2

o + b2)3/2

]
(91)
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3.2 A cylindrical shell in a magnetic field

Consider an infinitely long cylindrical ohmic shell of conductivity σ and radius a. The walls
have thickness ∆, with ∆ � a. The shell is placed in a uniform, but time dependent,
external magnetic field Hext(t), which is directed along the z-axis as shown below. The goal
of this problem is to determine the magnetic field inside the cylinder. The thickness ∆ is
sufficiently small that the induced current density may be considered (spatially) constant
inside the shell wall.

y

x
z

Hext(t) Hin(t) =?

part (e)

(a) (1 point) For a specified surface current K = K(t) φ̂, how is the magnetic field inside
the shell related to the external magnetic field.

(b) (3 points) Determine a differential equation for the evolution of the magnetic field
inside the cylinder. Check that your equation is dimensionfully correct.

(c) (4 points) For a sinusoidal external field, Hext(t) = Hoe
−iωt, determine the amplitude

of the magnetic field’s sinusoidal oscillations inside the cylinder. Make a graph of the
ratio of the interior to exterior amplitudes as a function of frequency.

(d) (4 points) At higher frequency the induced current changes appreciably over the wall
thickness ∆. Estimate the frequency where this (neglected) dynamics becomes impor-
tant.

(e) (8 points) Determine the amplitude of magnetic field’s sinusoidal oscillations inside
the cylinder without assuming that the induced current is constant within the walls.
Check that for small ∆ you reproduce the results of part (c).

Hint: Magnify and analyze the highlighted region shown in the figure to relate the
interior and exterior. Treat the walls of the cylinder as having infinite transverse (y
and z) extent, so that all fields in the walls are functions x only.
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Solution:

(a) First we note that for a specified current

n× (Hext −Hin) =
K

c
(92)

Taking n = ρ̂, H = H ẑ, K = K(t) φ̂, and noting that ρ̂× ẑ = −φ̂ we have

Hext(t)−Hin(t) = −K(t)

c
. (93)

One can (and should) also reason the signs in this equation using the right hand rule. Either
way

Hin(t) = Hext(t) +
K(t)

c
. (94)

(b) The changing flux inside the cylinder induces a voltage. This voltage produces a current
K(t) given by Ohms Law. Given the current we can relate the internal and external magnetic
fields through Eq. (94).

The voltage induced is

−
∮
E · d` =

1

c
∂t

∫
B · da . (95)

For the geometry at hand

− Eφ(2πa) =
1

c
Ḣin(t)πa2 , (96)

and thus
E = − a

2c
Ḣin . (97)

From Ohm’s Law, J = σE, and the surface current K = J∆, we find

K = −a∆σ

2c
Ḣin . (98)

Using the boundary conditions in Eq. (94) we have finally

a∆σ

2c2
Ḣin(t) +Hin(t) = Hext(t) . (99)

We note that since [σ] = s−1 it is easily seen that

τm ≡
a∆σ

2c2
, (100)

has units of time. To make sense of these numbers, note that magnetic diffusion coefficient
for copper is of order

D ≡ c2

σ
∼ cm2

millisec
. (101)

Thus the time constant of this equation is of order

τm ∼ millsec

(
cm2

a∆

)
. (102)
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(c) Solving Eq. (99) for a sinusoidal steady state, Hext(t) = Hoe
−iωt and Hin(t) = Hine

−iωt,
we have

− iωτmHin +Hin = Ho . (103)

Thus, Hin = Ho/(1− iωτm), and the oscillation amplitude is

|Hin| =
|Ho|√

1 + (ωτm)2
. (104)

(d) At higher frequency the skin depth becomes important. The skin depth is of order

δ(ω) ∼
√
D

ω
∼
√

c2

σω
. (105)

The dynamics changes when the skin depth is comparable to ∆

δ(ω) ∼ ∆ . (106)

Solving for ω, we find that the dynamics changes when

ω ∼ c2

σ∆2
. (107)

So, for a magnetic diffusion coefficient of order Eq. (101), we find

ω ∼ kHz

(
cm2

∆2

)
. (108)

(e) Now we solve more precisely for the fields inside the walls. The magnetic fields obey the
diffusion equation. This follows from Ampere’s Law

∇×B =
σ

c
E , (109)

and Faraday’s Law

−∇×E =
1

c
∂tB . (110)

Indeed, taking the curl of Ampere’s Law, using ∇×∇×B = ∇(∇·B)−∇2B and ∇·B = 0,
we find the magnetic diffusion equation

D∇2B = ∂tB , D ≡ c2

σ
. (111)

Since the wall thickness is very small compared to the radius, ∆� a, we can approximate
the geometry as one dimensional, up to correction of order ∆/a. the radial coordinate is
in the x direction, and the φ direction (the direction of the electric field and current) is
in the y direction. We choose x = 0 to be the inside wall of the cylindrical shell, so that
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x = ∆ is the outside wall of the cylindrical shell. The diffusion equation for sinusoidal field,
B(t,x) = B(x)e−iωt ẑ, reads

∂2
xB(x) = −i ω

D
B(x) . (112)

The electric field is determined from Eq. (109)

− c

σ

dB

dx
(x) = Ey(x) . (113)

Solving Eq. (112) we have
B(x) = C0e

iκx + C1e
−iκx (114)

where

κ =

√
iω

D
=

1 + i√
2

√
ω

D
. (115)

Equivalently, we will use
B(x) = C0 cos(κx) + C1 sin(κx) , (116)

since is slightly simpler to analyze the boundary conditions in this form.

We have boundary conditions at x = 0

B(0) = Hin (117)

and this sets C0 = Hin. The electric field at the x = 0 boundary is given by Eq. (97)

Ey(0) =
+iωa

2c
Hin , (118)

and this (through Eq. (113)) sets the derivative of B(x) at x = 0

B′(0) = −κ
2a

2
Hin , (119)

fixing the coefficient C1 = (κa)/2. To summarize

B(x) = Hin

[
cos(κx)− κa

2
sin(κx)

]
. (120)

Finally since B(∆) = Hext we find

Hin =
Hext

cos(κ∆)− κa
2

sin(κ∆)
, (121)

and thus the amplitude is

Hin =
Hext

| cos(κ∆)− a
2∆
κ∆ sin(κ∆)| . (122)

We can check that when κ∆� 1

|Hin| '
|Hext|
|1− iωτm|

=
Hext√

1 + (ωτm)2
, (123)
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Figure 2: The field in the center divided by the external field. See text for further explana-
tion

where we have recognized that
κ2a∆

2
= iωτm . (124)

We have assumed that a/∆� 1. Thus for (κ∆)2 � ∆/a we can neglect the cos(κ∆) term
in comparison to the sin(κ∆) term in the denominator of Eq. (122). For (κ∆)2 ∼ ∆/a we may
approximate cos(κ∆) ' 1 up to correction of order a/∆. Thus in a uniform approximation
(i.e. an approximation which is valid for all κ∆) we have

|Hin| =
Hext

|1− iωτm sin(κ∆)
κ∆
|
, (125)

which is our final result.

Taking a/∆ = 10 for instance, we plot the full result (Eq. (125)) and its low frequency
approximation (Eq. (104)) in Fig. 2. At large frequency the skin-depth leads to exponential
suppression, rather than the 1/ω behaviour predicted by the low frequency approximation.
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3.3 (Part of) Induction and the energy in static Magnetic fields

Consider a closed circuit of wire formed into a circular coil of n turns with radius a, resistance
R, and self-inductance L. The coil rotates around the z-axis in a uniform magnetic field H
directed along the x-axis (see below).

(a) (b)

O θ

ω

O

a
HH

Figure 3: (a) side view; (b) top view.

a) (6 points) Find the current in the coil as a function θ for rotation at a constant angular
velocity ω. Here θ(t) = ωt is the angle between the plane of the coil and H (the x-axis).

b) (4 points) Find the externally applied torque that is needed to maintain the coil’s uniform
rotation.

Note: in all parts you should assume that all transient effects have died away.
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Solution:

a) Let I be the current in the coil, we have∮
coil

E · dr = IR = −LdI
dt
− 1

c

∂ΦH

∂t
, (126)

where the flux is given by ΦH = πa2 nH sin θ(t) with θ(t) = ωt. With these phase conven-
tions, the area vector of the loop points in the negative ŷ direction at t = 0 and in the x̂
direction at ωt = π/2. Thus the circulation of a positive current at t = 0 is specified with
the right hand rule with the thumb pointing in the negative ŷ direction.

From Eq. (126), we have the differential equation for the current,

L
dI

dt
+RI = −πa

2

c
nH ω cos(ωt) . (127)

We will write this as

L
dI

dt
+RI = −πa

2

c
nH ω e−iωt . (128)

with the understanding that one is supposed to take the real part. Taking a trial solution
I(t) = Iωe

−iωt, we solve for Iω and find

Iω =
πa2 nH ω

c

1

R− iωL . (129)

Thus

I(t) = −πa
2 nH ω

c

1

2

[
eiωt

R + iωL
+

e−iωt

R− iωL

]
= −πa

2 nH

c

ω√
R2 + ω2L2

cos(ωt+ φ) , (130)

where the phase φ = tan−1(−ωL/R).

b) The rotating coil has a magnetic dipole moment, µ(t) = I(t) ~A(t)/c. With the conventions
of the previous part we have

µ(t) =mo cos(ωt+ φ) (− sin(ωt)x̂+ cos(ωt)ŷ) . (131)

where

mo ≡
(
πa2n

c

)2
ω√

R2 + ω2L2
H . (132)

The torque on the loop is µ×H, and an external torque of τext = −µ×H is needed to keep
the coil rotating at a constant angular velocity is (with H = Hx̂) :

τext(t) = moH cos(ωt+ φ) cos(ωt) ẑ (133)
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3.4 (Part of) A time dependent dipole

Consider an electric dipole at the spatial origin (x = 0) with a time dependent electric dipole
moment oriented along the z-axis, i.e.

p(t) = po cos(ωt)ẑ , (134)

where ẑ is a unit vector in the z direction.

1. Recall that the near and far fields of the time dependent dipole are qualitatively dif-
ferent. Estimate the length scale that separates the near and far fields.

2. In the near field regime, estimate how the electric and magnetic field strengths decrease
with the radius r. (r is the distance from the origin to the observation point.)

3. Using a system of units where E and B have the same units (such as Gaussian or
Heaviside-Lorentz), estimate the ratio E/B at a distance r in the near field1. Is this
ratio large or small?

4. Determine the electric and magnetic fields to the lowest non-trivial order in the near
field (or quasi-static) approximation.

1In SI units this question reads, “Estimate the ratio E/cB at a distance r in the near field.”
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Solution

1. The speed of light and the frequency define a length scale

1/(Ro) = ω/c

For distances less than Ro a quasi-static approximation may be used. For distances
greater than Ro the finite speed of light must be considered to calculate the radiation
fields

2. There are various ways to do this. Perhaps the most direct is to use the gauge potentials
in the lorentz gauge. We will not do this, but use the Maxwell equations directly.

The electric field in the near field region is just the field of a dipole

E =
1

4πr3
[3(p · r̂)r̂ − p] (135)

Clearly E lies in r̂, θ̂ plane. So

E =
1

4πr3

[
(2po(t) cos θ) r̂ + (po(t) sin θ) θ̂

]
(136)

where po(t) = po cos(ωt)

Since

∇×B =
1

c
∂tE (137)

We try B in the φ direction, with Bφ(r, θ). Then

(∇×B)θ = −1

r
∂r(rBφ) =

1

4πr3
(∂tpo) sin θ (138)

Integrating with respect to r we find

Bφ =
1

4πr2c
(∂tpo) sin θ +

f(θ)/R2
o

r
(139)

Where f(θ) is a dimensionless integration constant, and we have inserted factors of Ro

to make up the dimensions. The terms proportional to 1/r can be dropped in the near
field regime since it is smaller by r/Ro than the 1

r2
term. Thus

Bφ =
1

4πr2c
(∂tpo) sin θ . (140)

Then one verifies that

(∇×B)r =
1

r sin θ
∂θ(sin θBφ) =

1

4πr3c
(∂tpo) 2 cos θ =

1

c
∂tEr (141)

showing that Bφ satisfies the Maxwell equations.
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Another way to do this is by recognizing a formal simlarity to the magnetic dipole.
The vector potential of a magnetic dipole satisfies

∇×A = B of a dipole =
3n(n ·m)−m

4πr3
(142)

and equals

A =
m× r̂
4πr2

. (143)

Here we are trying to solve

∇×B =
3n(n · ṗ(t)/c)− ṗ(t)/c

4πr3
. (144)

So we have (by analogy with the magnetic dipole)

B =
ṗ(t)/c× r̂

4πr2
=

1

4πr2c
(∂tpo) sin θ φ̂ (145)
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3 D View Side View

R

a
+Q(t)
−Q(t)

3.5 A circular capicitor

A circular capacitor of radius R and separation a, with a � R, is charged with a slow
sinusoidal current, i.e. the charge on the plates is Q(t) = ±Qo sin(ωt) as illustrated above.
Neglect any fringing of the fields.

1. Determine the electric and magnetic fields in between the plates in a quasi-static ap-
proximation. Draw a picture to indicate the directions of the fields while the charge
on the bottom plate is positive and increasing.

2. What are the size of typical corrections to the fields computed in part (1) due to the
finite speed of light?

3. Write down the Maxwell equations for the gauge potentials φ and A in the Coulomb
gauge, ∇ ·A = 0

4. Determine the gauge potentials (φ,A) associated with the fields of part (1) and show
that that they satisfy the Maxwell equations found in part (3) to the required order.

The curl of a vector field F in cylindrical coordinates is with ρ =
√
x2 + y2 and

φ = arctan(y/x)

∇× F =

(
1

ρ

∂Fz
∂φ
− ∂Fφ

∂z

)
ρ̂+

(
∂Fρ
∂z
− ∂Fz

∂ρ

)
φ̂+

(
1

ρ

∂(ρFφ)

∂ρ
− ∂Fρ

∂φ

)
ẑ (146)

The Laplacian is

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+
∂2f

∂z2
+

1

ρ2

∂2f

∂φ2
(147)
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Solution – Heavy Side Lorentz Units

1. The electric field is

∇ · E = ρQ Ez =
Q(t)

πR2
ẑ (148)

where ρQ is used to distinguish the charge density ρQ from the radial coordinate ρ.
The magnetic field is determined from Amperes law with no current

1

c

∂

∂t
E−∇×B = 0 (149)

So

Bφ(2πρ) =
1

c
πρ2∂tE

z (150)

Or since Q(t) = Qo sin(ωt)

Bφ =
ρω

2c

Qo

πR2
cos(ωt) (151)

2. Corrections are of order (
Rω

c

)2

(152)

3. Then we have

−2ϕ− 1

c
∂t

(
1

c
∂tφ+∇ ·A

)
=ρQ (153)

−2A+ ∂i

(
1

c
∂tφ+∇ ·A

)
= j/c (154)

Taking ρQ = 0 and j = 0. Then taking the Coulomb gauge ∇ · A = 0 we have

−∇2ϕ =ρQ (155)

−2A =− ∂i
(

1

c
∂tφ

)
+ j/c (156)

4. Solving the φ

− ∂i∂iφ = 0 =⇒ φ =
Qo sin(ωt)

πR2
z (157)

where we have implicitly assumed that the potential is not corrected beyond its zeroth
order form.

For A we have only a z component. And, we may drop ∂2
t in the quasi static approxi-

mation

− 1

c2
∂2
tA

z +
1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
=

1

c
∂t∂

zφ (158)

1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
=
−ω
c

Qo

πR2
cos(ωt) (159)
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Integrating this last equation we find

Az = − Qo

πR2
cos(ωt)

ωρ2

4c
+ Azhomo(t, ρ) (160)

where
1

ρ

∂

∂ρ

(
ρ
∂Azhomo

∂ρ

)
= 0 (161)

is a homogeneous solution to the differenctial equation. The solutions to this equation
are of the form:

Azhomo(t, ρ) = C0(t) + C1(t) log(ρ) . (162)

The C1 term is irrregular at ρ = 0 and may be discarded. The C0(t) term is fixed by
the requirement that the charge on the plates is Q(t). The electric field is

Ez = −∇φ− 1

c
∂tA

z , (163)

and thus the charge density is

σ = n ·E = Ez =
Qo sin(ωt)

πR2
− Qo sin(ωt)

πR2

(
ω2ρ2

4c2

)
− 1

c
Ċ0(t) . (164)

The integral of the charge density is fixed by the condition

Qo sin(ωt) =

∫ R

0

(2πρdρ)σ(t, ρ) , (165)

leading to the requirement that

C0(t) =
Qo cos(ωt)

πR2

ωR2

8c
. (166)

The final result for Az thus reads

Az(t) = −Q0 cos(ωt)

πR2

(
ωρ2

4c
− ωR2

8c

)
. (167)

A straight forward sanity check gives B = ∇× A

Bφ = − ∂

∂ρ
Az =

Qo

πR2

ρω

2c
cosωt (168)
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4 Waves

4.1 Waves in Metals

Consider an ohmic metal with high (but not infinite) conductivity σ and magnetic perme-
ability2 µ = 1, so that B = H .

1. (6 pnts) Show that for harmonic time dependence, and high conductivity3 σ � ω, that
damped wave like solutions propagating in z-direction in the metal take the approxi-
mate form:

H(t, z) =Hce
−iωt+ikcz (169)

where4

kc =
1 + i√

2

√
σω

c
(170)

2. (4 pnts) The electric field obeys a similar equation, E(t, z) = Ece
−iωt+ikcz. Use the

Maxwell equations to express the amplitude of the electric field Ec in terms of the
magnetic field Hc.

3. (4 pnts) Now consider a linearly polarized plane wave in vacuum of frequency ω, which
is normally incident upon a semi-infinite metal block with infinite conductivity as
shown below.

vacuum infinite metal block

incident light

z = 0

When the metal has infinite conductivity, the amplitude of the reflected equals equals
the amplitude of the incident wave, but the polarization of the reflected wave is in-
verted. Explain this familiar fact using the appropriate boundary conditions.

4. (6 pnts) Now consider the same reflection problem as in part 3, but this time the metal
has a large (but finite) conductivity σ. Determine the electric and magnetic fields in
the metal to leading order in ω/σ. The amplitude of the incident wave is Eo.

5. (not part of exam). Determine the energy lost into the metal in terms of the input
magnetic field. (See lecture for two different ways to do this).

2 In SI units this reads µ = µo
3 In SI units this condition reads (σ/εo)� ω
4This is written in Heaviside-Lorentz units. In SI units kc = (1 + i)/

√
2
√
ω(σ/εo) /c, while in Gaussian

units, kc = (1 + i)/
√

2
√

4πσω /c.
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Solution

1. Writing the Maxwell Equations for harmonic fields

∇ ·E =ρ (171)

∇×B =
J

c
− iωE (172)

∇ ·B =0 (173)

∇×E = + i
ω

c
B (174)

we then use J = σE, and substitute E = Ec e
ikn·x, with n = ẑ, and H = Hce

ikn·x,
we have then

ikn×Bc =
σ

c
Ec − iωEc (175)

ikn×Ec = +
iω

c
Bc (176)

So: dropping the second term on the first equation (since σ � ω); taking ikn×(the
first equation); using the second equation to handle ikn×Ec; manipulating the double
cross product with the “b (ac) - (ab)c” rule; and finally using that ikn ·B = 0 gives

k2Bc =
iσωBc

c2
(177)

Or

k =

√
iσω

c2
= eiφ

√
σω

c
(178)

where eiφ = (1 + i)/
√

2.

2. Using

ikn×Ec =
iω

c
Bc (179)

Fom the ∇·E = ρ equation we get n ·Ec = 0 after writing using current convservation,
ρ = ikn ·E/(iω). Thus we make cross both sides with n, use “b(ac) - (ab) c” rule to
find:

Ec =
ω

ck
(−n×Bc) (180)

This says that

Ec =

√
ω

σ
e−iφ (−n×Bc) (181)

3. We write the the electric field in vacuum as a sum of the incident and reflected wave

Evac =EIx̂e
ikz−iωt + ERx̂e

−ikz−iωt (182)

Hvac =EI ŷe
ikz−iωt − ERŷe−ikz−iωt (183)
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while inside the metal the electric fields are zero. Thus the boundary condition

n× (E2 −E1) = 0 , (184)

yields
Evac|z=0 = 0 . (185)

Or
EI = −ER (186)

4. The boundary values of the vacuum fields are

Evac =(EI + ER)x̂ (187)

Hvac =(EI − ER)ŷ (188)

Inside the conductors, the boundary values of the conductor fields

Ec =Hce
−iφ
√
ω

σ
x̂ (189)

Hc =Hcŷ (190)

The boundary conditions
n× (Ec −Evac) = 0 (191)

and
n× (Hc −Hvac) = 0 (192)

So

EI + ER =Hc

√
ω

σ
e−iφ (193)

EI − ER =Hc (194)

And solving

Hc ' 2EI

(
1−

√
ω

σ
e−iφ

)
(195)

while

Ec ' 2EI

√
ω

σ
e−iφ (196)

5. So the energy loss per incident flux is found by evaluating the Poynting vector just
inside the metal

〈S · z〉
c
2
|EI |2

=
Re[EcH

∗
c ]

|EI |2
= 4

√
ω

σ
Re[eiφ] = 2

√
2

√
ω

σ
(197)
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4.2 Dispersion in collisionless plasmas with an external magnetic
field

Model a cold non-relativistic collisionless plasma as a system of non-interacting classical
electrons of uniform number density n0. The electrons have charge q and mass m and are
initially at rest. The electrons sit in a stationary and uniform background of positive charges
of charge density +|q|n0, whose only role in this problem is to neutralize the overall charge
of the system. In the presence of an external electromagnetic field the electrons begin to
move according to the classical equation of motion

m
d2x

dt2
= q(E(t,x) +

v

c
×B(t,x)) . (198)

Consider an electromagnetic plane wave with electric field E(t,x) = E0 e
−iωt+ik·x propa-

gating in the plasma. The amplitude E0 is sufficiently small that the plasma is only weakly
perturbed.

(a) (3 points) Determine the current density j(t,x) induced by the plane wave. Express

your results in terms of the plasma frequency ω2
p = q2n0

m
.

Hint: Work to leading order in the amplitude of the external field E0, so that an
electron’s position is constant up to small corrections proportional to E0, x(t) =
x0 + δx(t,x0).

(b) (3 points) Determine the induced charge density ρ(t,x). Show that E0 is transverse
to k for generic frequency ω.

(c) (5 points) Determine the permittivity of the plasma, ε(ω), as a function of frequency.
Find a dispersion relation, k(ω), for the electromagnetic plane wave. For what range
of frequencies will the plane wave propagate in the plasma? Explain.

(d) (3 points) For ω � ωp, how much does the group velocity of the wave deviate from the
vacuum speed of light?

Now place the plasma in a strong time independent and homogeneous magnetic field of
magnitude B0 pointing in z direction. We will reanalyze the dispersion relation when the
additional magnetic field is present. For circularly polarized waves with k = kẑ in the z
direction, the the electric field take the form

E±(t,x) = E0ε±e
−iωt+ikz, with ε± ≡

x̂± iŷ√
2

. (199)

(e) (2 points) Determine the current induced by the circularly polarized waves. Ex-
press your result in terms of the plasma frequency ω2

p and the cyclotron frequency5

Ωc = qB0/mc.

Hint: Assume that δx(t,x0) is proportional to ε± and work to leading order in the
electric field.

5In SI units Ωc = qB0/m.
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(f) (4 points) Determine the dispersion relation k±(ω) of circularly polarized plane waves in
the presence of B0. Describe qualitatively how linearly polarized light at high frequency
ω � ωp would change upon traversing a region of weak magnetic field.
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Solution

(a) The electron coordinate is peturbed from its equilibrium position harmonically:

x(t) = x0 + xω(x0)e−iωt︸ ︷︷ ︸
≡δx(t,x0)

, (200)

where here and below we notate harmonic time dependence of the variables with a subscript,
e.g.

E(t,x0) = Eω(x0)e−iωt , Eω(x0) ≡ E0e
ik·x0 . (201)

Substituting Eq. (200) into the Newtonian equations of motion and solving to first order
E0 and δx we find

−mω2xωe
−iωt = qE0e

ik·x0−iωt , (202)

yielding

xω(x0) = −qE0(x0)

mω2
. (203)

Thus the harmonic current at point x0 is

j(t,x0) = qn0v(t,x0) =− n0q
2

mω2
(−iωEω(x0)e−iωt) , (204)

=− ω2
p

ω2
(−iωEω(x0) e−iωt) , (205)

where we have defined the plasma frequency

ω2
p ≡

n0q
2

m
. (206)

(b) Once the current is specified the continuity equation

∂tρ(t,x0) +∇x0 · j(t,x0) = 0 , (207)

determines the induced charge density

ρω(x0) =
k · jω(x0)

ω
, (208)

=
ω2
p

ω2
ik ·E0e

ik·x0 . (209)

The Gaus law gives
∇ ·Eω(x0) = ρω(x0) , (210)

yielding

ik ·E0 =
ω2
p

ω2
ik ·E0 . (211)

For generic frequency this equation requires that k ·E0 = 0, i.e. E0 is transverse. For the
specific frequency ω = ωp, longtidunal modes, known as plasma oscillations, are possible.
Except at this frequency, the induced charged density is zero.
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(c) The frequency dependent dielectric susceptibility is defined through the linear constitu-
tive equation

jω(x0) = −iωχ(ω)Eω(x0) , (212)

and thus comparing Eq. (212) and Eq. (204) we find

ε(ω) = 1 + χ(ω) χ(ω) = −ω
2
p

ω2
. (213)

In terms of χ the density reads
ρ = −χ(ω)(ik ·Eω) (214)

Given the linear constitutive relations and the Maxwell equations

∇ ·Eω =ρω , (215)

+i
ω

c
Eω +∇×Bω =

jω
c
, (216)

∇ ·Bω =0 , (217)

−iω
c
Bω +∇×Eω =0 , (218)

we deduce that
ω2

c2
ε(ω)− k2 = 0 . (219)

Thus, there are nontrivial solutions for specific values of k:

k(ω) =
ω

c

√
1− ω2

p

ω2
. (220)

For frequencies less than the plasma frequency, k is imaginary and the plasma does not
support travelling waves. For frequencies greater than ωp travelling waves are supported.

(d) At large frequencies we have

k(ω) ' ω

c

(
1− ω2

p

2ω2

)
, (221)

and we may solve approximately for ω(k)

ω(k) ' ck

(
1 +

ω2
p

2(ck)2

)
. (222)

Differentiating with respect to k we determine the group velocity

vg =
dω

dk
' c

(
1− ω2

p

2c2k2

)
. (223)

Notice that the phase velocity ω(k)/k is greater than the speed of light, while the group
velocity is less than the speed of light as should be the case.
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(e) Now we have a strong magnetic field in the z direction. Since the light is circularly
polarized we try the suggested ansatz

x(t,x0) = xω(x0)e−iωtε+ . (224)

The velocity is
v(t,x0) = −iωxω(x0)e−iωε+ , (225)

and v ×B is proportional to

ε± × ẑ =(x̂± iŷ)× ẑ , (226)

=(−ŷ ± ix̂) , (227)

=± iε± . (228)

Substituting this form into the Newtonian equations of motion

m
d2x(t,x0)

dt
= q

(
E0(t,x0) +

v(t, x)

c
× B0ẑ

)
, (229)

we find
−mω2 xω = qE0e

ikz ± ωq
c
B0xω , (230)

Minor manipulations yield

xω = −qE0e
ikz

mω

1

ω ± Ωc

, (231)

where Ωc = qB0/mc is the cyclotron frequency. The induced current is

jω =n0q(−iωxω)ε± , (232)

=

[
− ω2

p

ω(ω ± Ωc)

] (
−iωE0e

ikzε±
)
. (233)

(f) Following the logic of part (c) the required dispersion relation is

k±(ω) =
ω

c

[
1− ω2

p

ω(ω ± Ωc)

]1/2

. (234)

For a ω � ωp ∼ Ωc we have

k±(ω) =
ω

c

(
1− ω2

p

2ω2
± ω2

pΩc

2ω3
+ . . .

)
, (235)

and thus to order k−2 inclusive the dispersion relation reads

ω±(k) = ck

(
1 +

ω2
p

2(ck)2
∓ ω2

pΩc

2(ck)3
+ . . .

)
. (236)

Because the eigen frequencies of right-handed and left handed waves are different by a small
amount, after a period of time ∆T the two waves will accumulate a small phase difference
∼ ω2

pΩc/(ck)2∆T . The linearly polarized light will appear to slowly precess in time as it
traverses the medium.
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4.3 Angular momentum in a wave packet

Consider a wave packet with a transverse profile Eo(x, y) propagating in the z direction (see
eq. (239) for a complete specification of E and B). Although the precise form of Eo(x, y)
is not needed below, for definiteness you may assume that the wave packet has a Gaussian
profile for

Eo(x, y) = Ae−x
2+y2

4σ2 , (237)

and is infinitely broad in the z direction. The following integrals may be useful:∫ ∞
−∞

du e−αu
2

=

√
π

α
, (238a)∫ ∞

−∞
du e−αu

2

eiku =
√
πe−

k2

4α . (238b)

(a) (2 points) When all derivatives of Eo(x, y) are neglected, show that6

E(0)(t, r) =Eo(x, y) ei(kz−ωt)
(x̂+ iŷ)√

2
, (239a)

B(0)(t, r) =ẑ ×E(0) , (239b)

is a solution to the Maxwell equations for ω = ck.

(b) (3 points) Calculate the time averaged energy per length in the wave packet, 〈U〉.

(c) (5 points) When the derivatives of Eo(x, y) are not neglected, Eq. (239) is not a solution
to the Maxwell equations. Determine the corrections to E(0) and B(0) to first order in
gradients for kσ � 1.

Hint: try a solution for E (and analogously for B) of the form

E(t, r) = E(0) + E(1)(x, y)ei(kz−ωt)ẑ , (240)

and determine the correction E(1)(x, y) in terms of Eo(x, y) and its derivatives.

(d) (4 points) Write the solution to part (c) as a linear superposition of the plane wave
solutions to the Maxwell equations. First use the superposition to qualitatively explain
the correction to the electric field (proportional to ẑ), and then use the superposition
to precisely reproduce this correction.

(e) (4 points) Calculate the z-component of the time averaged angular momentum per
length in the wave packet, 〈Lz〉, to the lowest non-trivial order in kσ.

(f) (2 points) Determine the ratio 〈Lz〉 / 〈U〉. Interpret the result using photons.

6This is Gaussian or Heaviside-Lorentz units. In SI units the magnetic field reads, B(0) = 1
Z0
ẑ × E(0)

where Z0 =
√

µ0

ε0
' 376 Ohms is the vacuum impedance.
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Solution

(a) The Maxwell equations in free space read

∇ ·E =0 , (241a)

−1

c
∂tE +∇×B =0 , (241b)

∇ ·B =0 , (241c)

−1

c
∂tB −∇×E =0 . (241d)

Substituting

E =Eoe
i(kz−ωt)ε+ , (242a)

B =Eoe
i(kz−ωt)ẑ × ε+ , (242b)

with Eo constant, gives the conditions

ẑ · ε+ =0 , (243a)

iω

c
ε+ + ikẑ × (ẑ × ε+) =0 , (243b)

ẑ · (ẑ × ε+) =0 , (243c)

iω

c
(ẑ × ε+)− ik(ẑ × ε+) =0 . (243d)

These equations are all clearly satisfied if ω = ck and ε+ = (x̂+ iŷ)/
√

2.

(b) The time-averaged energy per length is

U =

∫
dx

∫
dy

1

2

〈
E2 +B2

〉
, (244)

=

∫
dx

∫
dy

1

4

(
|E|2 + |B|2

)
(245)

=
1

2

∫
dx

∫
dy (Eo(x, y))2 , (246)

=A2(πσ2) . (247)

We used the fact that
|x̂± iŷ|2 = 1 |ẑ × (x̂± iŷ)|2 = 1 (248)

We also used the “time-averaging theorem”, i.e. that the time average of two harmonically
varying quantitites is

〈A(t)B(t)〉 ≡
〈
Re[Ae−iωt] Re[Be−iωt]

〉
=

1

2
Re[AB∗] (249)

which greatly simplifies all practical computations in EM.
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(c) We need to satisfy

∇ ·E =0 . (250)

Substituting the suggested ansatz, this equation reads

1√
2
∂xEo(x, y) +

i√
2
∂yEo(x, y) + ikE(1)(x, y) = 0 , (251)

and thus

E(1) =
i√
2k

(
∂Eo
∂x

+ i
∂Eo
∂y

)
. (252)

For the magnetic field, we have

B(0) = Eo
(−ix̂+ ŷ)√

2
ei(kz−ωt) . (253)

So since ∇ ·B = 0,
−i√

2
∂xEo +

1√
2
∂yEo + ikB(1) = 0 , (254)

we find

B(1) =
i√
2k

(
−i∂Eo

∂x
+
∂Eo
∂y

)
. (255)

(d) A general superposition (which is a pure plane in the z-direction) can be written

E(t, r) =
∑
s=±

∫
dkxdky
(2π)2

Eo(k, s)e
i(kxx+kyy+kzz−ω(k)t)εs(k) , (256)

where

k · εs(k) =0 , (257)

εs(k) · ε∗s(k) =1 , (258)

and of course
ω(k) = c

√
k2
x + k2

y + k2
z . (259)

It is always understood that the real part of Eq. (256) should be taken. The superposition
we described above has

kz � kx, ky ∼
1

σ
,

and is nearly circularly polarized. Qualitatively it is easy to see the need for a longitudinal
correction to E(0). The wave packet is a super-position of Fourier modes, one of which
is shown in Fig. 4. The electric field points along the polarization vector, ε(k). Sine the
polarization vector is perpendicular to k, it points partly in the z direction when kx and ky
are non-zero. Thus, there must be a component of the electric field in the z-direction. We
will now show how this reasoning quantitatively reproduces part (b).
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x̂

kz
k

ǫ(k)

kx
ẑ

Figure 4: A typical Fourier mode in the wave packet and its polarization vector ε(k).

First we note that to linear order in k⊥/kz

k =
√
k2
⊥ + k2

z ' kz , (260)

implying that ω = ck ' ckz are all approximately constant, and may be brought out of the
integral in Eq. (256). We next decompose k and ε into components transverse and parallel
to ẑ

k ≡~k⊥ + kzẑ , (261)

ε ≡~ε⊥ + εzẑ . (262)

Intuition from the plane wave solutions says that |~ε⊥| � εz. Indeed, from the orthogonality
condition

~k⊥ · ~ε⊥ + kzεz = 0 (263)

we find that

−
~k⊥ · ~ε⊥
k

= εz . (264)

The distribution is therefore

E(t, r) = ei(kz−ωt)
∫
dkxdky
(2π)2

Eo(kx, ky)e
i(kxx+kyy)

(
~ε⊥ −

~k⊥ · ~ε⊥
k

ẑ

)
. (265)

Taking ~ε⊥ = (x̂+ iŷ)/
√

2, and using the properties of Fourier transforms, i.e.

ikj︸︷︷︸
Fourier space

↔ ∂j︸︷︷︸
coordinate space

, (266)

yields

E(t, r) = eikz−iωt
(
Eo(x, y)

(x̂+ iŷ)√
2

+
i√
2k

(∂xEo(x, y) + i∂yEo(x, y)) ẑ

)
. (267)
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Clearly we want
Eo(x, y) = Ae−(x2+y2)/(4σ2) , (268)

and thus

Eo(kx, ky) =

∫
dx dy Eo(x, y) e−ikxx−ikyy = A (4πσ2) e−σ

2(k2x+k2y) , (269)

fully specifying the fourier decomposition in Eq. (265).

(e) The time averaged angular momentum per length is

L =
1

c

∫
dx

∫
dy 〈r × (E ×B)〉 . (270)

The integrand of the z-component of the angular momentum involves

ẑ · (r × (E ×B) = (ẑ ·E)(r ·B)− (r ·E)(ẑ ·B) . (271)

We see that because of the ẑ ·E and ẑ ·B terms the angular momentum necessarily involves
the first correction, E(1) and B(1). The time averaged angular momentum involves

〈ẑ · (r × (E ×B))〉 =
1

2
Re[(ẑ ·E)(r ·B)∗]− 1

2
Re[(r ·E)(ẑ ·B)∗] . (272)

Straightforward steps yield

Re[(ẑ ·E)(r ·B)∗] =Re[(ẑ ·E(1))(r ·B0)∗] , (273)

=Re[
1

2ik
(∂xEo + i∂yEo) (−ixEo + yEo)

∗] , (274)

=
1

2k
(xEo∂xEo + yEo∂yEo) , (275)

=
1

4k

(
x∂xE

2
o + y∂yE

2
o

)
. (276)

Similarly

Re[(r ·E)(ẑ ·B)∗] =Re[(r ·E(0))(ẑ ·B1)∗] , (277)

=Re

[
(xEo + iyEo)

1

2k
(∂xEo + i∂yEo)

∗
]
, (278)

=
1

2k
(xEo∂xEo + yEo∂yEo) , (279)

=
1

4k

(
x∂xE

2
o + y∂yE

2
o

)
. (280)

Thus

〈Lz〉 =
1

c

∫
dx

∫
dy 〈ẑ · (r × (E ×B))〉 , (281)

=

∫
dx

∫
dy

1

4ck

(
x∂xE

2
o + y∂yE

2
o

)
. (282)
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Integrating by parts we find

〈Lz〉 =
1

2ck

∫
dx

∫
dy E2

o , (283)

=
1

ck
A2(πσ2) . (284)

(f) For the required ratio we find
〈Lz〉
〈U〉 =

1

ω
. (285)

This is consistent with our quantum expectation. Each photon of definite frequency ω and
wave number k ' ω

c
ẑ carries energy E = ~ω and spin angular momentum ~:

〈Lz〉
〈U〉 =

~
~ω

. (286)
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