
2 Electrostatics

2.1 Elementary Electrostatics

Electrostatics:

(a) Fundamental Equations

∇ ·E =ρ (2.1)

∇×E =0 (2.2)

F =qE (2.3)

(b) Given the divergence theorem, we may integrate over volume of ∇ ·E = ρ and deduce Gauss Law:∫
S

E · dS = qtot

which relates the flux of electric field to the enclosed charge

(c) For a point charge ρ(r) = qδ3(r − ro) and the field of a point charge

E =
q r̂ − ro

4π|r − ro|2
(2.4)

and satisfies

∇ · q r̂ − ro
4π|r − ro|2

= qδ3(r − ro) (2.5)

(d) The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as
gradient of a scalar

E = −∇Φ Φ(xb)− Φ(xa) = −
∫ b

a

E · d` (2.6)

The potential satisfies the Poisson equation

−∇2Φ = ρ . (2.7)

The Laplace equation is just the homogeneous form of the Poisson equation

−∇2Φ = 0. (2.8)

The next section is devoted to solving the Laplace and Poisson equations

(e) The boundary conditions of electrostatics

n · (E2 −E1) =σ (2.9)

n× (E2 −E1) =0 (2.10)

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel compo-
nents are continuous.
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(f) The Potential Energy stored in an ensemble of charges is

UE =
1

2

∫
d3x ρ(r)Φ(r) (2.11)

(g) The energy density of an electrostatic field is

uE =
1

2
E2 (2.12)

(h) Force and stress

i) The stress tensor records T ij records the force per area. It is the force in the j-th direction per
area in the i-th. More precisely let n be the (outward directed) normal pointing from region
LEFT to region RIGHT, then

niT
ij = the j-th component of the force per area, by region LEFT on region RIGHT (2.13)

ii) The total momentum density gtot (momentum per volume) is supposed to obey a conservation
law

∂tg
j
tot + ∂iT

ij = 0 ∂tg
j
tot = −∂iT ij (2.14)

Thus we interpret the net force per volume f j as the (negative) divergence of the stress

f j = −∂iT ij (2.15)

iii) The stress tensor of a gas or fluid at rest is T ij = pδij where p is the pressure, so the force per
volume f is the negative gradient of pressure.

iv) The stress tensor of an electrostatic field is

T ij
E = −EiEj + 1

2δ
ijE2 (2.16)

Note that I will use an opposite sign convention from Jackson: T ij
me = −T ij

Jackson. This convention
has some good features when discussing relativity.

v) The net electric force on a charged object is

F j =

∫
d3x ρ(r)Ej(r) = −

∫
dS niT

ij (2.17)

(i) For a metal we have the following properties

i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per
area σ is related to the magnitude of the electric field. Let n be pointing from inside to outside
the metal:

E = Enn σ = En (2.18)

ii) Forces on conductors. In a conductor the force per area is

F i =
1

2
σEi =

1

2
σ2
n n

i (2.19)

The one half arises because half of the surface electric field arises from σ itself, and we should not
include the self-force. This can also be computed using the stress tensor

iii) Capacitance and the capacitance matrix and energy of system of conductors

For a single metal surface, the charge induced on the surface is proportional to the Φ.

q = CΦ .

When more than one conductor is involved this is replaced by the matrix equation:

qA =
∑
B

CABΦB .



2.2. MULTIPOLE EXPANSION 5

2.2 Multipole Expansion

Cartesian and Spherical Multipole Expansion

(a) Cartesian Multipole expansion

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges r � L
is expanded in cartesian multipole moments

Φ(r) =

∫
d3ro

ρ(ro)

4π|r − ro|
(2.20)

Φ(r) ' 1

4π

[
qtot
r

+
p · r̂
r2

+ 1
2Qij

r̂ir̂j

r3
+ . . .

]
(2.21)

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment,
and (traceless) quadrupole moments are respectively:

qtot =

∫
d3x ρ(r) (2.22)

p =

∫
d3x ρ(r)r (2.23)

Qij =

∫
d3x ρ(r)

(
3rirj − r2δij

)
(2.24)

respectively. There are five independent components of the symmetric and traceless tensor (matrix)
Qij . We have implicitly defined the moments with respect to an agreed upon origin ro = 0.

(b) Forces and energy of a small charge distribution in an external field

Given an external field Φ(r) we want to determine the energy of a charge distribution ρ(r) in this
external field. The potential energy of the charge distribution is

UE = QtotΦ(ro)− p ·E(ro)− 1

6
Qij∂iEj(ro) + . . . (2.25)

where ro is a chosen point in the charge distribution and the Qtot,p,Qij are the multipole moments
around that point (see below).

The multipoles are defined around the point ro on the small body:

Qtot =

∫
d3x ρ(r) (2.26)

p =

∫
d3x ρ(r) δr (2.27)

Qij =

∫
d3x ρ(r)

(
3 δri δrj − δr2 δij

)
(2.28)

where δr = r − ro.

The force on a charged object can be found by differentiating the energy

F = −∇roUE(ro) (2.29)

For a dipole this reads
F = (p · ∇)E (2.30)

(c) Spherical multipoles. To determine the potential far from the charge we we determine the potential
to be

Φ(r) =

∫
d3ro

ρ(ro)

4π|r − ro|
(2.31)

=

∞∑
`=0

∑̀
m=−`

q`m
2`+ 1

Y`m(θ, φ)

r`+1
(2.32)
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Now we characterize the charge distribution by spherical multipole moments:

q`m =

∫
d3ro ρ(ro)

[
r`o Y

∗
`m(θo, φo)

]
(2.33)

You should feel comfortable deriving this using an identity we derived in class (and will further discuss
later)

1

4π|r − ro|
=
∑
`m

1

2`+ 1

r`<
r`+1
>

Y`m(θ, φ)Y ∗`m(θo, φo) (2.34)

Here

r> =greater of r and ro (2.35)

r< =lesser of r and ro (2.36)

(2.37)

Could also notate this as
r`<
r`+1
>

=
r`o
r`+1

θ(r − ro) +
r`

r`+1
o

θ(ro − r) . (2.38)

I find this form clearer, since I know how to differntiate the right hand side using, dθ(x − xo)/dx =
δ(x− xo)

(d) For an azimuthally symmetric distribution only q`0 are non-zero, the equations can be simplified using
Y`0 =

√
(2`+ 1)/4πP`(cos θ) to

Φ(r, θ) =

∞∑
`=0

a`
P`(cos θ)

r`+1
(2.39)

(e) There is a one to one relation between the cartesian and spherical forms

px, py, pz ↔ q11, q10, q1−1 (2.40)

Qzz,Qxx −Qyy,Qxy,Qzx,Qzy ↔ q22, q21, q20, q2−1, q2−2 (2.41)

which can be found by equating Eq. (2.31) and Eq. (2.20) using

r̂ = (sin θ cosφ, sin θ sinφ, cos θ) (2.42)
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