Multipole Expansion with Spherical Harmonics

Then

$$
\varphi(\vec{r})=\int d^{3} \vec{r}_{0} \frac{\rho\left(r_{0}\right)}{4 \pi\left|\vec{r}-\vec{r}_{0}\right|}
$$

For $r \gg r_{0}$ we can expand $r_{>}=r$ and $r_{4}=r_{0}$ and we have the expansion

$$
\frac{1}{4 \pi\left|\vec{r}-\vec{r}_{0}\right|}=\sum_{l m} \frac{r_{0}^{l}}{r^{l+1}} \frac{1}{(2 l+1)} Y\left(\theta^{\prime}, \phi\right) Y_{l m}^{\ell}\left(\theta_{0} \phi_{0}\right)
$$

This leads to

$$
\varphi(r)=\sum_{l m} \frac{q_{l m}}{(2 l+1)} \frac{Y_{l m}^{(\theta, \phi)}}{r_{l+1}}=\frac{q_{00} Y_{00}}{r}+\frac{1}{3} \frac{q_{m m} Y_{1 m}}{r^{2}}+O\left(\frac{1}{r^{3}}\right)
$$

Where

$$
q_{l m}=\int d^{3} r_{0} p\left(\vec{r}_{0}\right) r_{0}^{l} Y_{l m}^{*}\left(\theta_{0}, \phi_{0}\right)
$$

spherical multipole moment

This multipole expansion is entirely equivalent to the expansion we had previously

$$
\varphi(r)=\frac{Q_{\text {Tor }}}{4 \pi r}+\frac{\vec{p} \cdot \hat{r}}{4 \pi r^{2}}+\frac{Q_{1 j}\left(\hat{r}^{\prime} \hat{r}^{\hat{\theta}}-1 / 3 \delta^{i y}\right)}{4 \pi r^{3}}
$$

To see this one needs to understand what $Y_{l m}(\theta, \phi)$ are. Y Y_{m} are linearly combos of the components of a symmetric traceless $l-t h$ rank tensor constructed out of \hat{r} $\hat{\boldsymbol{r}} \equiv \frac{\boldsymbol{r}}{r}$

Cartesian	Spherical	Rank
1	Y_{00}	0
\hat{r}_{i}	$Y_{\text {mm }}$	1
$\hat{r}_{i} \hat{r}_{j}-\frac{1}{3} \delta^{i j}$	$\left.\right\|_{2 m}$	2
$\hat{r}^{i} \hat{r}^{j} \hat{r}^{k}-\frac{1}{5}\left(\hat{r}^{i} \delta^{j k}+\hat{r}^{j} \delta^{k i}\right.$	$Y_{3 m}$	3

And so on.

1 Spherical Harmonics Table

For $\ell=0 \quad r^{0} Y_{00}$ is a linear combination of the scalar 1

$$
Y_{00} \propto 1
$$

$\underline{\text { For } \ell=1} \quad r Y_{1 m}$ is a linear combination of the vector $r^{i}=(x, y, z)$

$$
r^{i} \propto\left\{\begin{array} { l }
{ x } \\
{ y } \\
{ z }
\end{array} \quad r ^ { 2 } Y _ { 2 m } \propto \left\{\begin{array}{c}
(x+i y) \\
z \\
(x-i y)
\end{array}\right.\right.
$$

$\underline{\text { For } \ell=2} \quad r^{2} Y_{2 m}$ is a linear combo of the (symm-traceless) 2nd rank tensor $3 r^{i} r^{j}-r^{2} \delta^{i j}$

$$
3 r^{i} r^{j}-r^{2} \delta^{i j} \propto\left\{\begin{array} { c }
{ 3 z ^ { 2 } - r ^ { 2 } } \\
{ z x } \\
{ z y } \\
{ (x ^ { 2 } - y ^ { 2 }) } \\
{ x y }
\end{array} \quad r ^ { 2 } Y _ { 2 m } \propto \left\{\begin{array}{c}
(x+i y)^{2} \\
z(x+i y) \\
3 z^{2}-r^{2} \\
z(x-i y) \\
(x-i y)^{2}
\end{array}\right.\right.
$$

where $x^{2}-y^{2}$ is \propto the difference between the $x x$ and $y y$ components of $3 r^{i} r^{j}-r^{2} \delta^{i j}$.

For $\ell=3$

$$
Y_{3 m} \text { is a linear combo of the (sym-traceless) tensor } \underbrace{5 r^{i} r^{j} r^{k}-r^{2}\left(\delta^{i j} r^{k}+\delta^{j k} r^{i}+\delta^{k i} r^{j}\right)}_{\text {has } 7 \text {-components for the seven } Y_{3 m}}
$$

The transformation between cartesian and spherical is such that the dot products aagree

$$
\begin{align*}
\boldsymbol{p} \cdot \hat{\boldsymbol{r}} & =\frac{4 \pi}{2 \ell+1} \sum_{m=-1}^{1} q_{1 m} Y_{1 m} \tag{1}\\
\frac{1}{2} \mathcal{Q}_{i j}\left(\hat{r}^{i} \hat{r}^{j}-\frac{1}{3} \delta^{i j}\right) & =\frac{4 \pi}{2 \ell+1} \sum_{m=-2}^{2} q_{2 m} Y_{2 m} \tag{2}
\end{align*}
$$

To understand my meaning, take the dipole term:

This notation is bad. I mean: $Y_{11} \propto \frac{(x+i y)}{r}, Y_{1,-1} \propto \frac{(x-i y)}{r}$, and $Y_{10} \propto \frac{z}{r}$

$$
\left.\begin{array}{l}
Y_{11} \propto(\hat{x}+i \hat{y}) \\
Y_{1-1} \propto(\hat{x}-i \hat{y}) \\
Y_{10} \propto \hat{z}
\end{array}\right\}
$$

We see that $Y_{\text {pm }}$ is a linear combo of \hat{r}^{i}

Similarly $q_{t m}$ is a linear combo of \vec{p}, e.g.:

$$
q_{11}=\int d^{3} r_{0} \underbrace{r_{0} Y_{1 m}^{*} \rho\left(r_{0}\right)}_{\alpha(x-i y) \rho\left(r_{0}\right)} \propto \underbrace{p^{x}-i p^{y}}_{\text {The } x, y}
$$

components
since

$$
p^{x}=\int d^{3} \vec{r}_{0} \times \rho\left(\vec{r}_{0}\right) \quad e t c .
$$ of $\stackrel{\rightharpoonup}{p}$

The relation between p^{i} and $q_{1 m}$ is the same as the relation (i.e. linear-combo) between \hat{r}^{i} and $Y_{1 m}^{*}$

The relations and normalizations are chosen so that the series agree, e.g.

$$
\begin{gathered}
\frac{\stackrel{\rightharpoonup}{p} \cdot \hat{r}}{4 \pi r^{2}}=\sum_{m} \frac{1}{3} q_{\frac{q_{m}}{r^{2}} Y_{m} \Rightarrow \vec{p} \cdot \hat{r}=\frac{4 \pi}{3} \sum_{m} q_{1 m} Y_{1 m}} \\
r 2 l+1 \text { for } l=Y
\end{gathered}
$$

This is the statement that

$$
\begin{aligned}
\vec{p} \cdot \hat{r}= & \left(\frac{p_{x}-i p_{y}}{\sqrt{2}}\right)\left(\hat{r}_{x}+i \hat{r}_{y}\right)+\left(p_{x}+\frac{i p_{y}}{\sqrt{2}}\right)\left(\hat{\Gamma}_{x}-\frac{1}{\sqrt{\sqrt{r}}}{ }_{y}\right) \\
& +p_{z} \cdot \hat{r}_{z} \\
= & \frac{4 \pi}{3}\left(q_{11}^{*} Y_{11}+q_{1-1}^{*} Y_{1-1}+q_{10} Y_{10}\right)
\end{aligned}
$$

Similarly $Y_{2 m}$ is a linear combo of $\hat{r}^{i} \hat{r} \hat{j}-\frac{1}{3} \delta^{y}$
(There are five components of $\hat{r}^{i} \hat{r} \hat{j}-1 / 3 \delta^{\prime j}$, and five $l=2$ spherical harmonics). And,$q 2 \mathrm{~m}$ is a linear combo of the quadrupole tensor Q, y components (The map between $q_{2 m}$ and $Q_{1 j}$ is the same as between $Y_{2 m}^{*}$ and $\left.\hat{r}^{i} \hat{r}^{j}-1 / 3 \delta^{i j}\right)$. Then this map is constructed so that

$$
\begin{array}{r}
\frac{1 \cdot Q_{i y}\left(\hat{r}^{i} \hat{r}^{j}-\frac{1}{3} \delta^{i y}\right)=}{\sum_{m} \frac{1}{5} q_{2 m} Y_{2 m} / r^{3}}+\hat{r} 2 l+1 \text { with } l=2
\end{array}
$$

Relation between the cartesian and spherical multipoles, $q, \boldsymbol{p}, Q_{i j} \leftrightarrow q_{00}, q_{1 m}, q_{2 m}$.

$$
\left.\begin{array}{l}
q_{00}=\frac{1}{\sqrt{4 \pi}} \int \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\frac{1}{\sqrt{4 \pi}} q \\
q_{11}=-\sqrt{\frac{3}{8 \pi}} \int\left(x^{\prime}-i y^{\prime}\right) \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=-\sqrt{\frac{3}{8 \pi}}\left(p_{x}-i p_{y}\right) \\
q_{10}=\sqrt{\frac{3}{4 \pi}} \int z^{\prime} \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\sqrt{\frac{3}{4 \pi}} p_{z} \\
q_{22}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \int\left(x^{\prime}-i y^{\prime}\right)^{2} \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\frac{1}{12} \sqrt{\frac{15}{2 \pi}}\left(Q_{11}-2 i Q_{12}-Q_{22}\right) \\
q_{21}=-\sqrt{\frac{15}{8 \pi}} \int z^{\prime}\left(x^{\prime}-i y^{\prime}\right) \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=-\frac{1}{3} \sqrt{\frac{15}{8 \pi}}\left(Q_{13}-i Q_{23}\right) \tag{4.6}\\
q_{20}=\frac{1}{2} \sqrt{\frac{5}{4 \pi}} \int\left(3 z^{\prime 2}-r^{\prime 2}\right) \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\frac{1}{2} \sqrt{\frac{5}{4 \pi}} Q_{33}
\end{array}\right\}
$$

