Solving For Green Fens By Separation
Now consider a related problem

$$
\begin{aligned}
G_{D}\left(\vec{r}, \vec{r}_{0}\right)= & \text { potential at } \\
& \vec{r} \text { due to } \\
& \text { charge at } \vec{r}_{0} \\
= & \text { find it }
\end{aligned}
$$

by separation

$$
\varphi=0
$$

Consider a unit charge at $\vec{r}_{0}=\left(\vec{x}_{0}, z_{0}\right)$ where $\vec{x}_{0}=\left(x_{0}, y_{0}\right)$ denotes the coordinates in the plane,

- The walls of the box are grounded
- We wrote down the eige-functions in the last problem

$$
\begin{aligned}
& \psi_{n m}(\vec{x})=\sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \\
& \int_{0}^{a} d x \int_{0}^{b} d y \psi_{n m}^{*}(\vec{x}) \psi_{n m}(\vec{x})=\left(\frac{a}{2}\right)\left(\frac{b}{2}\right) \delta_{n n^{\prime}}, \delta_{m m^{\prime}}
\end{aligned}
$$

- They are complete

$$
\begin{aligned}
\frac{4}{a b} \sum_{n m} \psi_{n m}(\vec{x}) \psi_{n m}^{*}(\vec{x}) & =\delta_{0}^{2}\left(\vec{x}-\vec{x}_{0}\right) \\
& \equiv \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right)
\end{aligned}
$$

Motivated by Eq* we look a green-fon of the form

$$
G_{D}=\frac{4}{a b} \sum_{n m} g_{m m}\left(z, z_{0}\right) \psi_{n m}(\vec{x}) \psi_{n m}\left(\vec{x}_{0}\right)
$$

And will solve for $g\left(z, z_{j}\right)$.
We substitute

$$
-\left(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) G_{D}\left(\vec{r}, r_{0}\right)=\delta\left(z-z_{0}\right) \delta^{2}\left(\vec{x}-\vec{x}_{0}\right)
$$

Since

$$
-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)^{\psi}(\vec{x})=\gamma_{n m}^{2} \psi_{n m}(\vec{x})
$$

We find

$$
\begin{aligned}
& \frac{4}{a b} \sum_{n m} \psi_{n m}(\vec{x}) \psi_{n m}\left(\vec{x}_{0}\right)\left[-g_{n m}^{\prime \prime}+\gamma_{n m} g_{n m}\right] \\
&=\delta\left(z-z_{s}\right) \frac{4}{a b} \sum_{n m} \psi_{n m}(\vec{x}) \psi_{n m}\left(\vec{x}_{d}\right)
\end{aligned}
$$

Implying gro is a ID Green fan
Solving equations like this is discussed in a separate note

* $\left[-\frac{\partial^{2}}{\partial z^{2}}+\gamma_{n m}^{2}\right] g\left(z, z_{0}\right)=\delta\left(z-z_{0}\right)$

1D Grin fan equation
Then we may solve this equation as described on the cause well site

- Briefly for $z<z_{0}$ we solve (*)

$$
\begin{aligned}
g & =A e^{-\gamma z}+B e^{\gamma z} \uparrow \quad \begin{array}{l}
\text { the potential } \\
\text { vanishes at } z=0 \\
\text { (see problem statement) }
\end{array} \\
& =A \underbrace{\sinh \gamma z}, \phi_{<}(z) \leftarrow \text { the solution for } z<z_{0}
\end{aligned}
$$

- For $z>z_{0}$ we solve $\&$

$$
\begin{aligned}
g= & A e^{-\gamma z}+B e^{\gamma z} \quad \text { we dont want growing } \\
& =\underline{A} \underbrace{e^{-\gamma z}} \\
& \equiv \phi_{>}(z) \longleftarrow \text { the solutions }
\end{aligned}
$$

- Continuity implies:

$$
\left.g=C\left[\phi,(z) \phi_{<}\left(z_{0}\right) \theta\left(z-z_{0}\right)+\phi\right\rangle\left(z_{0}\right) \phi_{<}(z) \theta\left(z_{0}-z\right)\right]
$$

Finally we integrate across the $\delta-f$ en (see

$$
-\left.\frac{\partial}{\partial z} g\right|_{z=z_{0}+\varepsilon}+\left.\frac{\partial g}{\partial z}\right|_{z=z_{0}-\varepsilon}=1
$$

Which follows from

$$
\int_{z_{0}-\varepsilon}^{z_{0}+\varepsilon}\left(-\frac{\partial^{2}}{\partial z^{2}}+\gamma^{2}\right) g=\int_{z_{0}-\varepsilon}^{z_{0}+\varepsilon} \delta\left(z-z_{0}\right) d z
$$

- Substituting $*$ into x we find

$$
\left.C\left[-\phi_{>}^{\prime}(z) \phi_{k}\left(z_{0}\right)+\phi_{<}^{\prime}\left(z_{0}\right) \phi \psi_{0}\right)\right]=1
$$

or $C=\frac{1}{W\left(z_{0}\right)}$ whit $W(z)=\phi_{<}^{\prime} \phi_{\rangle}-\phi_{<} \phi_{\rangle}^{\prime}$
For $\phi_{z}=\sinh \gamma z$ and $\phi_{y}=e^{\gamma z}$,

$$
=\text { wronskian of the }
$$ two solutions

$$
W=\gamma
$$

Thus

$$
g\left(z, z_{0}\right)=\frac{1}{\gamma}\left[\sinh \gamma z e^{-\gamma z_{0}} \theta\left(z_{0}-z\right)+\sinh \gamma z_{0} e^{-\gamma z} \theta\left(z-z_{0}\right)\right]
$$

- We will use a brief but obscure notation.

Let

$$
\begin{aligned}
z_{<} & =\text {smaller of } z, z_{0} \\
& = \begin{cases}z & z<z_{0} \\
z_{0} & z_{0}<z\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
z_{>} & =\text {greater of } z, z_{0} \\
& =\left\{\begin{array}{cc}
z_{0} & z<z_{0} \\
z & z_{0}<z
\end{array}\right.
\end{aligned}
$$

Then

$$
\left.g\left(z ; z_{\nu}\right)=\frac{1}{\gamma} \sinh \gamma z_{<} e^{-\gamma z}\right\rangle
$$

Then

$$
G_{b}\left(\vec{r}, \vec{r}_{0}\right)=\frac{4}{a b} \sum_{n m} \frac{1}{\gamma_{n m}} \sinh \gamma_{n m} z_{e} e^{-\gamma_{n m} z^{z}}>\psi_{n m}(\vec{x}) \psi_{n m}^{*}\left(\vec{x}_{0}\right)
$$

First Comment
Solving the boundary problem with $G_{D}\left(\vec{r}, \vec{r}_{0}\right)$
We will use G_{D} to construct the boundary propagator K
Returning to the first problem:
 (see online!)

$$
\begin{aligned}
\varphi(\vec{r}) & =\int d x_{0} d y_{0} K\left(\vec{r}, \vec{x}_{0}\right) \varphi_{0}\left(\vec{x}_{0}\right) \\
\vec{r} & =(\vec{x}, z)
\end{aligned}
$$

$$
\text { normal }=\vec{n}_{4} \downarrow^{\uparrow} \varphi_{\varphi}\left(\vec{x}_{0}\right)
$$

© z coordinate
We can construct the surface green-fon K which will propagate the boundary data $\varphi_{0}(x, y)$ into the interior

$$
\left.\begin{aligned}
K\left(\vec{r}, \vec{r}_{0}\right) & =-\vec{n} \cdot \nabla_{r_{0}} G\left(\vec{r}, \vec{r}_{0}\right) \\
& =\left.\frac{\partial}{\partial z_{0}}\right|_{r_{0} \in \partial V}\left(\vec{r}, \vec{r}_{0}\right)
\end{aligned}\right|_{z_{0}=0} \quad(\vec{n}=-\hat{z})
$$

- Using the Green fan with $z_{>}=z$ and $z_{<}=z_{0}$ we have

$$
\left.\frac{\partial}{\partial z_{0}} \frac{1}{\gamma} \sinh \gamma z_{0}\right|_{z_{0}=0}=1 \text { and thus }
$$

$$
K=\frac{4}{a b} \sum_{n m} e^{-\gamma_{n m} z} \psi_{n m}(\vec{x}) \psi_{n m}^{*}\left(\vec{x}_{0}\right)
$$

- Then according to the green-theorem

$$
\varphi(\vec{r})=\int d x_{0} d y_{0} K\left(\vec{r}, \vec{x}_{0}\right) \varphi_{0}\left(x_{0}, y_{0}\right)
$$

Or

$$
\varphi(\vec{r})=\sum_{n m} e^{-\gamma_{n m}{ }^{z}} \psi_{n m}(\vec{x}) A_{n m}
$$

Where

$$
A_{n m}=\frac{4}{a b} \int d x_{0} d y_{0} \psi_{n m}^{*}\left(\vec{x}_{0}\right) \varphi_{0}\left(\vec{x}_{0}\right)
$$

Which agrees (c) before

Second Comenent: (see online!)

- The procedure we used to find the ID green fen generalizes. For the ID equation
$r^{\text {kind }}$ of measure

$$
\left[-\frac{d}{d x} p(x) \frac{d}{d x}+q(x)\right] g\left(x, x_{0}\right)=\delta\left(x-x_{0}\right)
$$

We can follow the same steps (see online) If $\phi_{<}(x)$ is the solution for $x<x_{0}$ and $\phi_{,}(x)$ is the solution for $x>x_{0}$. The Green function is

$$
g\left(x, x_{0}\right)=\frac{\left[\phi_{<}(x) \phi_{>}\left(x_{0}\right) \theta\left(x_{0}-x\right)+\phi_{>}(x) \phi_{<}\left(x_{0}\right) \theta\left(x-x_{0}\right)\right]}{p\left(x_{0}\right) W\left(x_{0}\right)}
$$

Where

$$
W(x)=\phi_{<}^{\prime}(x) \phi_{>}(x)-\phi_{\rangle}^{\prime}(x) \phi_{<}(x)
$$

is the Wronskian. Also recall that

$$
p(x) W(x)=\text { constant } \Rightarrow \text { so the denominator }
$$ is actually a fixed number. For this example it was $1 / \gamma$ so the denominator is not a functions of x this is easy to prove from Eq* without the $\delta-f_{c m}$.

We will use a highly compact notation

$$
\left.g\left(x, x_{0}\right)=C \phi_{<}\left(x_{<}\right) \phi_{\rangle}(x\rangle\right)
$$

where

$$
C=\frac{1}{p W}
$$

Here $x_{>}$is the greater of x and x_{0}, while $x_{<}$is the lesser of x and x_{0}. This compact but cryptic notation means the same as the previous page, which should be used if confusion arises.

