
Problem 1. Lienard-Wiechert for constant velocity

(a) For a particle moving with constant velocity v along the x−axis show using Lorentz
transformation that gauge potential from a point particle is

Ax(t, x,x⊥ = b) =
e

4π

γβ√
b2 + γ2(x− vt)2

(1)

at the point (t, r) = (t, x, y, z) = (t, x, b). So at the point (t, 0, b, 0) the gauge potential
Ax is is

Ax(t, x, y = b) =
e

4π

γβ√
b2 + (γvt)2

(2)

(b) Start by noting the definitions

T ≡ t− R

c
R = |r − r∗(T )| R ≡ Rn ≡ r − r∗(T ) n ≡ R

R
(3)

and drawing a picture for yourself. Then, after setting c = 1 and v = β to simplify
algebra, show that the Lienard Wiechert result,

A(t, r) =
e

4π

[
v/c

R(1− n · β)

]

ret

. (4)

gives the same result as Eq. (2).

(c) Show that the Lienard-Wiechert potential, Eq. (4), and analogous equation for ϕ can
be written covariantly

Aµ(X) = − e

4π

[
Uµ

U ·∆X

]

ret

, (5)

where ∆Xµ is the difference in the space-time coordinate four vectors of the emission
and observation points, and Uµ is the four velocity of the particle. What is ∆X ·∆X ≡
∆Xµ∆Xµ? Can []ret be expressed covariantly?
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Problem 2. Radiation during perpendicular acceleration

Consider an ultrarelativistic particle of velocity β experiencing an acceleration a⊥ perpen-
dicular to the direction of motion. Here a⊥ points along the x-axis and β points along the
z-axis.

(a) Show that the energy radiated per retarded time is approximately

dW

dTdΩ
=

e2

16π2c3
a2⊥

(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
(6)

' e2

2π2c3
a2⊥

(1 + (γθ)2)3

[
1− 4(γθ)2 cos2 φ

(1 + (γθ)2)

]
(7)

In the first equality, I give the full answer without approximation, but I will only grade
the second approximate result.

Hint, in working out this radiation pattern you might (as a start) show without ap-
proximation that

|n× (n− β)× a|2 = (1− n · β)2a2 − (n · a)2(1− β2) (8)

by using the ”b(ac)-(ab)c” rule. Then select a coordinate system were

β =(0, 0, β) (9)

a =(a⊥, 0, 0) (10)

n =(sin θ cosφ, sin θ sinφ, cos θ) (11)

(b) Work in a ultra-relativistic approximation, and compute the total power by integrat-
ing over the solid angle (as done in class) to show that you obtain the appropriate
relativistic Larmour result

dW

dT
= come on . . . you know it . . . right? (12)
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Problem 3. An oscillator radiating

(a) Determine the time averaged power radiated per unit sold angle for a non-relativistic
charge moving along the z-axis with instantaneous position, z(T ) = H cos(ωoT ).

(b) Now consider relativistic charge executing simple harmonic motion. Show that the
instantaneous power radiated per unit solid angle is

dP (T )

dΩ
=

dW

dT dΩ
=

e2

16π2

cβ4

H2

sin2 θ cos2(ωoT )

(1 + β cos Θ sinωoT )5
(13)

Here β = ωoH/c and γ = 1/
√

1− β2

(c) In the relativistic limit the power radiated is dominated by the energy radiated during
a short time interval around ωoT = π/2, 3π/2, 5π/2, . . .. Explain why. Where does
the outgoing radiation point at these times.

(d) Let ∆T denote the time deviation from one of this discrete times, e.g. T = 3π/(2ωo) +
∆T . Show that close to one of these time moments:

dP (∆T )

dΩ
=

dW

d∆T dΩ
' 2e2

π2

cβ4

H2
γ6

(γωo∆T )2(γθ)2

(1 + (γθ)2 + (γωo∆T )2)5
(14)

(e) By integrating the results of the previous part over the ∆T of a single pulse, show that
the time averaged power is

dP (T )

dΩ
=

e2

128π2

cβ4

H2
γ5

5(γθ)2

(1 + (γθ)2)7/2
(15)

(f) Make rough sketches of the angular distribution for non-relativistic and relativistic
motion.
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Problem 4. Radiation during a collision

A classical non-relativistic charged particle of charge q and mass m is incident upon a repul-
sive mechanical potential U(r)

U(r) =
A
r2
,

so that the force on the particle is F = −∇U(r). The particle moves along the x-axis and
strikes the central potential head on as shown below. The incident kinetic energy (i.e. the
kinetic energy of the particle far from the origin) is K.

origin

(a) (2 points) Determine the particle’s classical trajectory x(t). Adjust the integration
constants so that the particle reaches its distance of closest approach at t = 0. Check
that for late times x(t) approaches vo t with the phyically correct value of vo. Check
that for small times x(t) behaves as x(t) ' xo + 1

2
aot

2 with the physically correct value
of xo.

(b) (4 points) Use dimensional reasoning and the Larmour formula to estimate the total
energy lost to electromagnetic radiation during the collision. How does the energy lost
scale with the incident velocity?

(c) (2 points) Calculate the energy lost to radiation during the collision processes. Some
relevant integrals are given at the end of this problem.

Now consider a detector placed along the y-axis far from the origin as shown below. The
front face of the detector has an area of πR2, and the detector is placed at a distance L from
the origin with L� R.

origin

detector

L

⇡R2

(d) (2 points) What is the direction of polarization of the observed light in the detector?
Explain.

(e) (2 points) What is the typical frequency of the photons that are emitted at 90o?
Explain.
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(f) (5 points) For the detector described above, determine the average number of photons
received by the detector per unit frequency:

dN

dω
. (16)

Some relevant integrals are given at the end of the problem.

(g) (3 points) We have determined the photon radiation spectrum using classical electro-
dynamics. For what values of the parameters A and K is this approximation justified?

Useful integrals and formulas:

(a) For positive integer n, we note the integrals
∫ ∞

−∞
du

1

(1 + u2)n
= π cn (17)

where

c1, c2, c3, c4, . . . = 1,
1

2
,
3

8
,

5

16
, . . . (18)

(b) For positive integers n, we note the integrals
∫ ∞

0

du
cos(xu)

(u2 + 1)n+
1
2

= cn x
nKn(x) (19)

where

c1, c2, c3, c4, . . . = 1,
1

3
,

1

15
,

1

105
, . . . (20)

and Kn(x) are the modified Bessel functions, and the RHS of Eq. (19) is illustrated
below
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Problem 5. Periodic pulses

Consider a periodic motion that repeats itself with period To. Show that the continuous
frequency spectrum becomes a discrete spectrum containing frequencies that are integral
multiples of the fundamental, ωo = 2π/To.

Let the electric field from a single pulse (or period) be E1(t), i.e. where E1(t) is non-
zero between 0 and To and vanishes elsewhere, t < 0 and t > To. Let E1(ω) be its fourier
transform.

(a) Suppose that the wave form repeats once so that two pulses are received. E2(t) consists
of the first pulse E1(t), plus a second pulse, E2(t) = E1(t) +E1(t−To). Show that the
Fourier transform and the power spectrum is

E2(ω) = E1(ω) (1 + eiωTo) |E2(ω)|2 = |E1(ω)|2 (2 + 2 cos(ωTo)) (21)

(b) Now suppose that we have n (with n odd) arranged almost symmetrically around t = 0,
i.e.

En(t) = E1(t+(n−1)To/2)+. . .+E1(t+To)+E1(t)+E1(t−To)+. . . E1(t−(n−1)To/2) ,
(22)

so that for n = 3
E3(t) = E1(t+ To) + E1(t) + E1(t− To) . (23)

Show that

En(ω) = E1(ω)
sin(nωTo/2)

sin(ωTo/2)
(24)

and

|En(ω)|2 = |E1(ω)|2
(

sin(nωTo/2)

sin(ωTo/2)

)2

(25)

(c) By taking limits of your expressions in the previous part show that after n pulses, with
n→∞, we find

En(ω) =
∑

m

E1(ωm)
2π

To
δ(ω − ωm) (26)

and

|En(ω)|2 = nTo︸︷︷︸
total time

×
∑

m

|E1(ωm)|2 2π

T 2
o

δ(ω − ωm) (27)

where ωm = 2πm/To.
Remark We have in effect shown that if we define

∆(t) ≡
∞∑

n=−∞

δ(t− nTo) . (28)

Then the Fourier transform of ∆(t) is

∆̂(ω) =
∑

n

e−iωnTo =
∑

m

2π

To
δ(ω − ωm) . (29)
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(d) Show that a general expression for the time averaged power radiated per unit solid
angle into each multipole ωm ≡ mωo is:

dPm
dΩ

=
|rE(ωm)|2
T 2
o

(30)

Or
dP̂m
dΩ

=
e2ω4

om
2

32π4c3

∣∣∣∣
∫ To
0

v(T )× n exp

[
iωm(T − n · r∗(T )

c
)

]∣∣∣∣
2

dT , (31)

Here dP̂m/dΩ is defined so that over along time period ∆T , the energy per solid angle
is

dW

dΩ
= ∆T

∞∑

m=1

dP̂m
dΩ

(32)

Also note that we are summing only over the positive values of m which is different
from how we had it in class:

dP̂m
dΩ
≡ dPm

dΩ
+
dP−m
dΩ

(33)
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Problem 6. Radiation spectrum of a SHO

(a) Show that for the simple harmonic motion of a charge discussed in Problem: An Oscil-
lator Radiating, the average power radiated per unit solid angle in the m-th harmonic
is

dP̂m
dΩ

=
e2cβ2

8π2H2
m2 tan2 θ [Jm(mβ cos θ)]2 (34)

(b) Show that in the non-relativistic limit the total power radiated is all in the fundamental
and has the value

P =
e2

4π

2

3
ω4
oH

2 (35)

where H2 is the mean squared amplitude of the oscillation.
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Problem 7. (Optional) Energy during a burst of deceleration

A particle of charge e moves at constant velocity, βc, for t < 0. During the short time
interval, 0 < t < ∆t its velocity remains in the same direction but its speed decreases
linearly in time to zero. For t > ∆t, the particle remains at rest.

(a) Show that the radiant energy emitted per unit solid angle is

dW

dΩ
=

e2β2

64π2c∆t

(2− β cos θ) [1 + (1− β cos θ)2] sin2 θ

(1− β cos θ)4
(36)

(b) In the limit γ � 1, show that the angular distribution can be expressed as

dW

dξ
' e2β2

4π c

γ4

∆t

ξ

(1 + ξ)4
(37)

where ξ = (γθ)2.

(c) Show for γ � 1 that the total energy radiated is in agreement with the relativistic
generalization of the Larmour formula.
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