
Problem 1. A Periodic Array of Charged Rings

Consider a periodic array of charged rings of radius R and separation b, so that the z-
coordinates of the rings are z = 0,±b,±2b, . . .. Each ring has charge Q. We will find the
potential below

R

z = 0

z = −2b

z = −b

z = b

z = 2b

(a) First classify the homogeneous solutions to the Laplace equation in cylindrical coor-
dinates with azimuthal symmetry using separation of variables. Show that a typical
homogeneous solution can be written ϕ(z, ρ) = R(ρ)Z(z) and determine the equations
that R(ρ) and Z(z) satisfy. You should find[

−1

ρ

d

dρ

(
ρ
dR

dρ

)
+ k2R

]
=0 (1)

(i) What are the solutions to the Z(z) equation? For z-periodic functions with period
b what are the allowed values of k

(ii) Where are the singular points of radial differential equation, Eq. (1)?

(iii) (Do not hand this in) The two solutions to Eq. (1) are the modified Bessel func-
tions I0(kρ) and K0(kρ) for k2 > 0. Look up these functions and make a graph
of them. Record (from the internet or Mathematica) a series expansion at x = 0
and x =∞ for these functions. Note the following:

i. At x = 0, one function is regular and one function is irregular.

ii. At x =∞ the two solutions exchange roles, with the regular function at x = 0
becoming irregular at x = ∞ and the regular function at x = ∞ becoming
irregular at x = 0.

Why is this the expected behavior?
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(iv) For the differential equation[
− d

dx

(
p(x)

d

dx

)
+ q(x)

]
y(x) = 0 (2)

where p(x) is positive definite, show that the p(x)W (x) is constant, where W (x)
is the Wronskian of the two solutions to the differential equation. Determine
I ′0(x)K(x)−K ′(x)I0(x) up to a constant. Determine the (conventional) constant
by using the series expansion for the modified Bessel functions at x = 0.

To summarize we have shown that for azimuthally symmetric functions the solutions to the
homogeneous Laplace equation take the form

ϕ(z, ρ) =
∑
n

(AnI0(knx) +BnK0(knx)) eiknx , (3)

where for periodic functions only discrete values of k are allowed. At this point you should
basically understand the course notes – Appendix D.3, which treated the case where the
potential vanished at z = 0 and z = L, and also allowed for non-azimuthally symmetric
potentials. Now return to the problem at hand – the periodic array of rings.

(b) This problem is solved by exploiting the periodic nature of the problem, writing the
charge density and the potential as a Fourier series. Use completeness to show that
that the charge density is

ρ(x) =
Q

2πR
δ(ρ−R)

1

b

∞∑
n=−∞

eiknz (4)

where kn = 2πn/b.

(c) Solve for the potential inside and outside the rings, and use the jump condition to
relate the two solutions. Show that the potential outside of the rings is

ϕ(x) =
Q

2πb

[
− ln ρ+ 2

∞∑
n=1

cos(knz)I0(knR)K0(knρ)

]
(5)

(d) For ρ large show that

ϕ(x) ' Q

2πb

[
− ln ρ+

√
b

ρ
cos(

2πz

b
)Io(2πR/b)e

−2πρ/b

]
(6)

and explicitly interpret the leading term, − ln ρ, and its coefficient, Q/(2πb). Qualita-
tively explain the behaviour of the subleading term for large and small R/b.
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Problem 2. A dielectric cylinder in an external field

An infinitely long dielectric cylinder of dielectric constant ε and radius a (centered at the
origin with axis along the z axis) is placed in an approximately constant external electric
field in the x direction. The external electric field contains a constant small gradient in the
x direction, ∂xEx ≡ E ′o. The external potential is described by

ϕext(r) = −Eox−
1

2
E ′o
(
x2 − y2

)
(7)

The gradient is small since E ′oa� Eo.

(a) (Optional) Separate variables in cylindrical coordinates with x = ρ cosφ and y =
ρ sinφ. Show that the general solution to the Laplace equation takes the form

ϕ = A0 +B0 ln ρ+
∞∑
n=1

(
Anρ

n +
Bn

ρn

)
cos(nφ) +

∞∑
m=1

(
Cmρ

m +
Dm

ρm

)
sin(mφ) (8)

(Not Optional) When I first started writing this problem, I set ϕext(r) = −Eox −
1
2
E ′ox

2, what is wrong with this?

(b) Determine the potential both inside and outside the cylinder including the first cor-
rection due to the field gradient, E ′o. I find

ϕ =

{
2

1+ε
ϕext(r) r < a

ϕext(r) + ε−1
ε+1

(
E0a2 cosφ

ρ
+

E′0a
4 cos 2φ

2ρ2

)
r > a

(9)

(c) Determine the surface charge induced on the cylinder including the first correction due
to the field gradient. You should find

σ = 2
(ε− 1)

(ε+ 1)
[E0 cosφ+ E ′0a cos(2φ)] (10)

Using the stress tensor formalism and the boundary conditions it is possible show that
the force on the cylinder is

F i =

∫
da σ Ei

ext (11)

This is quite difficult for such an intuitive result and it is suggested that you take it
on faith on first pass.

(d) Show that the net force on the cylinder per unit length is

F

L
= 2πa2

(
ε− 1

ε+ 1

)
E0E

′
0 (12)

to first order in E ′0.
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Problem 3. A point charge and a semi-infinite dielectric slab

A point charge of charge q in vacuum is at the origin ro = (0, 0, 0). It is separated from
a semi-infinite dielectric slab filling the space z > a with dielectric constant ε > 1. When
evaluating the potential for z < a, an image charge solution is found by placing an image
charge at z = 2a. When evaluating the potential for z > a we place an image charge at the
origin. The full image solution is

ϕ(r) =

{
q

4π|r| −
βq

4π|r−2aẑ| z < a
β′q

4πε|r| z > a
(13)

where β = (ε− 1)/(ε+ 1) and β′ = (2ε)/(1 + ε)

(a) Sketch a picture of the resulting electric field lines in the xz plane. Pay particular
attention to the behaviour at the interface, noting Eq. (14) derived below.

(b) Quite generally show that the electric field lines refract at a discontinuous interface

tan θI
εI

=
tan θII
εII

(14)

where θI and θII are the angles between the normal pointing from I to II and the electric
fields in region I and region II, and εI and εII are the dielectric constants.
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Problem 4. A Dielectric slab intervenes.

This problem will calculate the force between a point charge q in vacuum and a dielectric slab
with dielectric constant ε > 1. The point charge is at the origin ro = (xo, yo, zo) = (0, 0, 0),
but we will keep xo, yo, zo for clarity. The slab lies between z = a and z = a+ δ with a > 0
and has infinite extent in the x, y directions

(a) Write the free space Green function as a Fourier transform

q

4π|r − ro|
= q

∫
d2k⊥
(2π)2

eik⊥·(r⊥−ro⊥)gok⊥(z, zo) (15)

and show that the free space green function in fourier space is

gok⊥(z, zo) =
e−k⊥|z−zo|

2k⊥
(16)

(b) Now consider the dielectric slab and write the potential produced by the point charge
at zo = 0 as a Fourier transform

ϕ(r⊥, z) = q

∫
d2k⊥
(2π)2

eik⊥r⊥gk⊥(z) , (17)

and determine for gk⊥(z) by solving in each region, matching across the interfaces, and
by analyzing the jump at zo. Show that for z < 0 and 0 < z < a

gk⊥(z) =

{
ekz

2k
− βek(z−2a)(1−e−2δk)

2k(1−β2e−2δk)
z < 0

e−kz

2k
− βek(z−2a)(1−e−2δk)

2k(1−β2e−2δk)
0 < z < a

(18)

where β = (ε− 1)/(ε+ 1) and we have written k = k⊥ to lighten the notation.

(c) Checks:

(i) Show that for δ → ∞ the potential for z < a is in agreement with the results of
the previous problem.

(ii) Show that when ε → ∞ (when the dielectric becomes almost metallic) you get
the right potential.

(d) Show that the electric potential for region z < a can be written

ϕ = ϕind +
q

4πr
(19)

where ϕind is the induced potential and is regular at r = 0. Show that the force on the
point charge is

F z = β
q2

4π(2a)2

∫ ∞
0

du
4ue−2u(1− e−2(δ/a)u)

1− β2e−2(δ/a)u
(20)

(e) Use a program such as mathematica to make a graph of the force F z/(βq2/(4π(2a)2))
versus δ/a for β = 0.1, 0.5, 0.9 and sketch the result.
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