Problem 1. Dipole from potentials to order $1 / c^{2}$

This continues the "Dipole two ways" problem from the homework
(a) (Optional) Starting from the Maxwell equations derive/write down the equations for (ϕ, \boldsymbol{A}) in the Lorenz gauge

$$
\begin{equation*}
\frac{1}{c} \partial_{t} \varphi+\nabla \cdot \boldsymbol{A}=0 \tag{1}
\end{equation*}
$$

and Coulomb gauges

$$
\begin{equation*}
\nabla \cdot \boldsymbol{A}=0 \tag{2}
\end{equation*}
$$

(b) Use your expressions to shown that to first order in $1 / c$

$$
\begin{align*}
& \boldsymbol{A}_{\mathrm{lrnz}}(\boldsymbol{r})=\int d^{3} \boldsymbol{r}_{0} \frac{\boldsymbol{j}\left(\boldsymbol{r}_{0}\right) / c}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} \tag{3}\\
& \boldsymbol{A}_{\text {coul }}(\boldsymbol{r})=\int d^{3} \boldsymbol{r}_{0} \frac{\boldsymbol{j}\left(\boldsymbol{r}_{0}\right) / c+\boldsymbol{j}_{\mathrm{D}}\left(\boldsymbol{r}_{0}\right) / c}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} \tag{4}
\end{align*}
$$

Evaluate the Lorenz gauge integral (using the results of homework 2) yielding

$$
\begin{equation*}
\boldsymbol{A}_{\mathrm{lrnz}}=\frac{\dot{\boldsymbol{p}}}{4 \pi r c} \tag{5}
\end{equation*}
$$

(c) Show that the Coulomb gauge expression can be written

$$
\begin{equation*}
\boldsymbol{A}_{\text {coul }}(\boldsymbol{r})=\frac{\dot{\boldsymbol{p}}}{4 \pi r c}-\nabla \frac{\partial}{c \partial t}\left[\int d^{3} \boldsymbol{r}_{0} \varphi\left(\boldsymbol{r}_{0}\right) \frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}\right] \tag{6}
\end{equation*}
$$

At home (or in class if you have time) show that ${ }^{1}$

$$
\begin{equation*}
\left[\int d^{3} \boldsymbol{r}_{0} \varphi\left(\boldsymbol{r}_{0}\right) \frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}\right]=\frac{\boldsymbol{p} \cdot \boldsymbol{n}}{8 \pi} \tag{9}
\end{equation*}
$$

where $\boldsymbol{n} \equiv \hat{\boldsymbol{r}}$, to show that

$$
\begin{align*}
\boldsymbol{A}_{\mathrm{coul}}(\boldsymbol{r}) & =\frac{\dot{\boldsymbol{p}}}{4 \pi r c}-\nabla \frac{\partial}{c \partial t}\left(\frac{\boldsymbol{n} \cdot \boldsymbol{p}}{8 \pi}\right) \tag{10a}\\
& =\frac{\boldsymbol{n}(\boldsymbol{n} \cdot \dot{\boldsymbol{p}})+\dot{\boldsymbol{p}}}{8 \pi r c} \tag{10b}
\end{align*}
$$

As a by product you should find

$$
\begin{equation*}
\partial_{i} n_{j}=\frac{\delta_{i j}-n_{i} n_{j}}{r} \tag{11}
\end{equation*}
$$

which will be relatively useful going forward.

$$
\begin{align*}
& { }^{1} \text { Use the "Coulomb Identity" } \\
& \qquad \frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}=\sum_{\ell m} \frac{1}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}(\theta, \phi) Y_{\ell m}\left(\theta_{0}, \phi_{0}\right) \tag{7}
\end{align*}
$$

and the trick in lecture with

$$
\begin{equation*}
\varphi\left(\boldsymbol{r}_{0}\right)=\frac{p \cos \left(\theta_{0}\right)}{4 \pi r_{0}^{2}} \tag{8}
\end{equation*}
$$

(d) Without calculation explain why the magnetic field $\boldsymbol{B}^{(1)}$ from Eq. (10) and Eq. (5) must agree. Which gauge is easier for the magnetic field?
(e) Starting from the equations written down in (a), determine the correction to order $1 / c^{2}$ to φ and in the Lorenz and Coulomb gauges. You should find :

$$
\begin{equation*}
\varphi_{\operatorname{lrnz}}^{(2)}=-\frac{\boldsymbol{n} \cdot \ddot{\boldsymbol{p}}}{8 \pi c^{2}} \tag{12}
\end{equation*}
$$

Relate the two results for $(\varphi, \boldsymbol{A})$ via a gauge transformation.
(f) Determine the electric field to second order in $1 / c$ using the Lorenz and Coulomb gauges. Notice how particularly simple the Coulomb gauge is for this purpose. You should find (in either gauge)

$$
\begin{equation*}
\boldsymbol{E}^{(2)}=-\frac{\boldsymbol{n}(\boldsymbol{n} \cdot \ddot{\boldsymbol{p}})+\ddot{\boldsymbol{p}}}{8 \pi r c^{2}} \tag{13}
\end{equation*}
$$

(g) At what radius does $\boldsymbol{E}^{(2)}$ become comparable to $\boldsymbol{E}^{(0)}$

Solution

(a) See lecture. In the Lorentz gauge

$$
\begin{align*}
-\square \varphi & =\rho \tag{14}\\
-\square \boldsymbol{A} & =\frac{\boldsymbol{j}}{c} \tag{15}
\end{align*}
$$

In the Coulomb gauge

$$
\begin{align*}
-\nabla^{2} \varphi & =\rho \tag{16}\\
-\square \boldsymbol{A} & =\frac{\boldsymbol{j}}{c}+\frac{\boldsymbol{j}_{D}}{c} \tag{17}
\end{align*}
$$

where the displacement current is

$$
\begin{equation*}
\frac{\boldsymbol{j}_{D}}{c}=-\frac{1}{c} \partial_{t} \nabla \varphi \tag{18}
\end{equation*}
$$

(b) In the Coulomb gauge

$$
\begin{equation*}
\left(\frac{1}{c^{2}} \partial_{t}^{2}-\nabla^{2}\right) \boldsymbol{A}=\boldsymbol{j} / c+\frac{1}{c} \partial_{t}(-\nabla \varphi) \tag{19}
\end{equation*}
$$

To first order in $1 / c$ we may neglect the second derivative ∂_{t}^{2}. We may also replace φ with its zero order solution

$$
\begin{equation*}
-\nabla^{2} \boldsymbol{A}=\boldsymbol{j} / c+\frac{1}{c} \partial_{t}\left(-\nabla \varphi^{(0)}\right) \tag{20}
\end{equation*}
$$

The solution to this equation is

$$
\begin{equation*}
\boldsymbol{A}(t, \boldsymbol{r})=\int d^{3} \boldsymbol{r}_{0} \frac{\boldsymbol{j}\left(t, \boldsymbol{r}_{0}\right) / c+\boldsymbol{j}_{D}\left(t, \boldsymbol{r}_{0}\right) / c}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} \tag{21}
\end{equation*}
$$

where the displacement current is

$$
\begin{equation*}
\boldsymbol{j}_{D}\left(t, \boldsymbol{r}_{0}\right)=\partial_{t} \boldsymbol{E}^{(0)}=-\partial_{t}\left(\nabla \varphi^{(0)}\right) \tag{22}
\end{equation*}
$$

In the Lorenz Gauge

$$
\begin{equation*}
\left(\frac{1}{c^{2}} \partial_{t}^{2}-\nabla^{2}\right) \boldsymbol{A}=\boldsymbol{j} / c \tag{23}
\end{equation*}
$$

and to first order in $1 / c$

$$
\begin{equation*}
\boldsymbol{A}(t, \boldsymbol{r})=\int d^{3} \boldsymbol{r}_{0} \frac{\boldsymbol{j}\left(t, \boldsymbol{r}_{0}\right) / c}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} \tag{24}
\end{equation*}
$$

In the dipole approximation from the previous problem

$$
\begin{equation*}
\boldsymbol{j}=\dot{\boldsymbol{p}}(t) \delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \tag{25}
\end{equation*}
$$

where \boldsymbol{r}^{\prime} is the position of the dipole, i.e. $\boldsymbol{r}^{\prime}=0$ in this problem So

$$
\begin{equation*}
\boldsymbol{A}_{\mathrm{lrnz}}(t, \boldsymbol{r})=\frac{\dot{\boldsymbol{p}}}{4 \pi r c} \tag{26}
\end{equation*}
$$

(c) In the Coulomb gauge we have

$$
\begin{equation*}
\boldsymbol{A}_{\mathrm{coul}}=\boldsymbol{A}_{\mathrm{lrnz}}+\int d^{3} \boldsymbol{r}_{0} \frac{\boldsymbol{j}_{D}\left(t, \boldsymbol{r}_{0}\right) / c}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} \tag{27}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\boldsymbol{A}_{\mathrm{coul}}=\boldsymbol{A}_{\mathrm{lrnz}}-\nabla \frac{1}{c} \partial_{t} \underbrace{\int d^{3} \boldsymbol{r}_{0} \frac{\varphi^{(0)}\left(t, \boldsymbol{r}_{0}\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}}_{\text {Integral }} \tag{28}
\end{equation*}
$$

Substitute

$$
\begin{equation*}
\varphi\left(t, \boldsymbol{r}_{0}\right)=\frac{p(t) \cos \left(\theta_{0}\right)}{4 \pi r_{0}^{2}} \tag{29}
\end{equation*}
$$

into the underlined integral, use the expansion

$$
\begin{equation*}
\frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}=\sum_{\ell m} \frac{1}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}(\theta, \phi) Y_{\ell m}\left(\theta_{0}, \phi_{0}\right), \tag{30}
\end{equation*}
$$

and perform the integrals over angles θ_{0}, ϕ_{0}. The angular integrals are simplified by noting that

$$
\begin{equation*}
\cos \left(\theta_{0}\right)=A Y_{10}\left(\theta_{0}, \phi_{0}\right) \tag{31}
\end{equation*}
$$

with A a constant, and thus only the $\ell=1$ and $m=0$ term survives the integration, yielding $A Y_{10}(\theta, \phi)=\cos \theta$. The radial integration gives

$$
\begin{align*}
\int d^{3} \boldsymbol{r}_{0} \frac{\varphi^{(0)}\left(t, \boldsymbol{r}_{0}\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} & =p(t) \cos (\theta) \int_{0}^{\infty} \frac{r_{0}^{2} d r_{0}}{4 \pi r_{0}^{2}} \frac{1}{3} \frac{r_{<}}{r_{>}^{2}} \tag{32a}\\
& =\frac{p(t) \cos (\theta)}{4 \pi}\left[\int_{0}^{r} d r_{0} \frac{r_{0}}{3 r^{2}}+\int_{r}^{\infty} d r_{0} \frac{r}{3 r_{0}^{2}}\right] \tag{32b}\\
& =\frac{p(t) \cos (\theta)}{4 \pi}\left[\frac{1}{6}+\frac{1}{3}\right] \tag{32c}\\
& =\frac{p(t) \cos (\theta)}{8 \pi} \tag{32~d}\\
& =\frac{\boldsymbol{p}(t) \cdot \boldsymbol{n}}{8 \pi} \tag{32e}
\end{align*}
$$

where $\boldsymbol{n}=\hat{\boldsymbol{r}}$.
Then note the derivative

$$
\begin{equation*}
\partial_{i} n_{j}=\frac{\delta_{i j}-n_{i} n_{j}}{r} \tag{33}
\end{equation*}
$$

so the i-th component of the gradient is

$$
\begin{equation*}
[\nabla(\boldsymbol{n} \cdot \dot{\boldsymbol{p}})]_{i}=\frac{\dot{p}_{i}-(\dot{\boldsymbol{p}} \cdot \boldsymbol{n}) n_{i}}{r} \tag{34}
\end{equation*}
$$

When combined with $\dot{\boldsymbol{p}} /(4 \pi r c)$ from $\boldsymbol{A}_{\text {lrnz }}$ in Eq. (28), we find the quoted result in Eq. (10)
(d) The two expressions for \boldsymbol{A} differ by a gradient, and the curl of a gradient is zero. So $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ is the same for either form of \boldsymbol{A}.
(e) In the Lorenz gauge we should solve

$$
\begin{equation*}
\left(\frac{1}{c^{2}} \partial_{t}^{2}-\nabla^{2}\right) \varphi_{\mathrm{Irnz}}=\rho \tag{35}
\end{equation*}
$$

Setting up an expansion through second order in $1 / c$

$$
\begin{equation*}
\varphi=\varphi^{(0)}+\varphi^{(2)} \tag{36}
\end{equation*}
$$

At zeroth order we have the Laplace equation

$$
\begin{equation*}
-\nabla^{2} \varphi_{\ln \mathrm{m}}^{(0)}=\rho \tag{37}
\end{equation*}
$$

while at second (and higher order) the zeroth order solution acts like a source for $\varphi^{(2)}$

$$
\begin{equation*}
-\nabla^{2} \varphi_{\operatorname{lrnz}}^{(2)}=-\frac{1}{c^{2}} \ddot{\varphi}_{\operatorname{lrnz}}^{(0)} \tag{38}
\end{equation*}
$$

The zeroth order solution is simply the potential due to a dipole

$$
\begin{equation*}
\varphi_{\operatorname{lrnz}}^{(0)}\left(t, \boldsymbol{r}_{0}\right)=\frac{\boldsymbol{p}(t) \cdot \boldsymbol{n}_{0}}{4 \pi r_{0}^{2}} \tag{39}
\end{equation*}
$$

where $\boldsymbol{n}_{0}=\hat{\boldsymbol{r}}_{0}$. Then the scalar potential at second order (i.e. the solution to Eq. (38)) can be written down immediately by analogy to the Coulomb law

$$
\begin{equation*}
\varphi_{\operatorname{lrnz}}^{(2)}(t, \boldsymbol{r})=-\int d^{3} \boldsymbol{r}_{0} \frac{\ddot{\boldsymbol{p}}(t) \cdot \boldsymbol{n}_{0}}{c^{2}\left(4 \pi r_{0}^{2}\right)} \frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|} \tag{40}
\end{equation*}
$$

The integral is the same as before (see Eq. (32)) yielding

$$
\begin{equation*}
\varphi_{\mathrm{lrnz}}^{(2)}(t, \boldsymbol{r})=-\frac{\ddot{\boldsymbol{p}} \cdot \boldsymbol{n}}{8 \pi c^{2}} \tag{41}
\end{equation*}
$$

Of course the integral should be the same - we are solving the same problem. Changing gauges merely shuffles the problem around. (This is prosaically referred to as conservation of shit.)
Thus the full result (through $1 / c^{2}$) for the Lorenz gauges is

$$
\begin{align*}
\varphi_{\mathrm{lrnz}}(t, \boldsymbol{r}) & =\frac{\boldsymbol{p}(t) \cdot \boldsymbol{n}}{4 \pi r^{2}}-\frac{\ddot{\boldsymbol{p}} \cdot \boldsymbol{n}}{8 \pi c^{2}} \tag{42a}\\
\boldsymbol{A}_{\mathrm{lrnz}}(t, \boldsymbol{r}) & =\frac{\dot{\boldsymbol{p}}}{4 \pi c r} \tag{42b}
\end{align*}
$$

In the Coulomb gauge the zeroth order potential (the potential from a dipole) is exact to all orders, but the vector potential is more complicated as we have seen:

$$
\begin{align*}
\varphi_{\mathrm{coul}}(t, \boldsymbol{r}) & =\frac{\boldsymbol{p}(t) \cdot \boldsymbol{n}}{4 \pi r^{2}} \tag{43a}\\
\boldsymbol{A}_{\mathrm{coul}}(t, \boldsymbol{r}) & =\frac{\dot{\boldsymbol{p}}}{4 \pi r c}-\nabla \frac{(\boldsymbol{n} \cdot \dot{\boldsymbol{p}})}{8 \pi c} \tag{43b}
\end{align*}
$$

The two gauges are related by a gauge transformation

$$
\begin{equation*}
\Lambda(t, \boldsymbol{r})=\frac{\dot{\boldsymbol{p}} \cdot \boldsymbol{n}}{8 \pi c} \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{\mathrm{lrnz}}(t, \boldsymbol{r}) & =\varphi_{\mathrm{coul}}-\frac{1}{c} \partial_{t} \Lambda(t, r) \tag{45}\\
\boldsymbol{A}_{\mathrm{lrnz}}(t, \boldsymbol{r}) & =\boldsymbol{A}_{\mathrm{coul}}+\nabla \Lambda \tag{46}
\end{align*}
$$

(f) To compute the electric field to quadratic order in the Coulomb gauge

$$
\begin{align*}
\boldsymbol{E} & =-\nabla \varphi^{(0)}-\frac{1}{c} \partial_{t} \boldsymbol{A} \tag{47}\\
& =\boldsymbol{E}^{(0)}+\boldsymbol{E}^{(2)} \tag{48}
\end{align*}
$$

The first term arises at zeroth order and is the usual

$$
\begin{equation*}
\boldsymbol{E}^{(0)}=-\nabla\left(\frac{\boldsymbol{p} \cdot \boldsymbol{n}}{4 \pi r^{2}}\right)=\frac{3 \boldsymbol{n}(\boldsymbol{n} \cdot \boldsymbol{p})-\boldsymbol{p}}{4 \pi r^{3}} \tag{49}
\end{equation*}
$$

while the second term arises from the coulomb gauge vector potential at first order

$$
\begin{equation*}
\boldsymbol{E}^{(2)}=-\frac{1}{c} \partial_{t} \boldsymbol{A}^{(1)}=-\frac{1}{c} \partial_{t}\left[\frac{\boldsymbol{n}(\boldsymbol{n} \cdot \dot{\boldsymbol{p}})+\dot{\boldsymbol{p}}}{8 \pi r c}\right] \tag{50}
\end{equation*}
$$

which gives the quoted result. In the Lorenz gauge

$$
\begin{equation*}
\boldsymbol{E}=-\nabla \varphi_{\operatorname{lnnz}}^{(0)}-\nabla \varphi_{\operatorname{lrnz}}^{(2)}-\frac{1}{c} \partial_{t} \partial \boldsymbol{A}^{(1)} \tag{51}
\end{equation*}
$$

and

$$
\begin{align*}
\boldsymbol{E}^{(2)} & =-\nabla \varphi_{\operatorname{lrnz}}^{(2)}-\frac{\ddot{\boldsymbol{p}}}{4 \pi r c^{2}} \tag{52}\\
& =-\frac{\boldsymbol{n}(\boldsymbol{n} \cdot \ddot{\boldsymbol{p}})+\ddot{\boldsymbol{p}}}{8 \pi r c^{2}} \tag{53}
\end{align*}
$$

(g) Comparison

$$
\begin{equation*}
E^{(0)} \sim \frac{p}{r^{3}} \tag{54}
\end{equation*}
$$

while

$$
\begin{equation*}
E^{(2)} \sim \frac{\ddot{p}}{c^{2} r} \sim \frac{\omega^{2} p}{c^{2} r} \tag{55}
\end{equation*}
$$

Thus the two are equal when

$$
\begin{equation*}
r \sim \frac{c}{\omega} \tag{56}
\end{equation*}
$$

