
Problem 1. Dipole from potentials to order 1/c2

This continues the “Dipole two ways” problem from the homework

(a) (Optional) Starting from the Maxwell equations derive/write down the equations for
(φ,A) in the Lorenz gauge

1

c
∂tϕ+∇ ·A = 0 (1)

and Coulomb gauges
∇ ·A = 0 (2)

(b) Use your expressions to shown that to first order in 1/c

Alrnz(r) =

∫
d3r0

j(r0)/c

4π|r − r0|
(3)

Acoul(r) =

∫
d3r0

j(r0)/c+ jD(r0)/c

4π|r − r0|
(4)

Evaluate the Lorenz gauge integral (using the results of homework 2) yielding

Alrnz =
ṗ

4πrc
(5)

(c) Show that the Coulomb gauge expression can be written

Acoul(r) =
ṗ

4πrc
−∇ ∂

c∂t

[∫
d3r0 ϕ(r0)

1

4π|r − r0|

]
(6)

At home (or in class if you have time) show that1[∫
d3r0 ϕ(r0)

1

4π|r − r0|

]
=

p · n
8π

(9)

where n ≡ r̂, to show that

Acoul(r) =
ṗ

4πrc
−∇ ∂

c∂t

(n · p
8π

)
(10a)

=
n(n · ṗ) + ṗ

8πrc
(10b)

As a by product you should find

∂inj =
δij − ninj

r
(11)

which will be relatively useful going forward.

1 Use the “Coulomb Identity”

1

4π|r − r0|
=
∑
`m

1

2`+ 1

r`<
r`+1
>

Y`m(θ, φ)Y`m(θ0, φ0) (7)

and the trick in lecture with

ϕ(r0) =
p cos(θ0)

4πr20
(8)
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(d) Without calculation explain why the magnetic field B(1) from Eq. (10) and Eq. (5)
must agree. Which gauge is easier for the magnetic field?

(e) Starting from the equations written down in (a), determine the correction to order 1/c2

to ϕ and in the Lorenz and Coulomb gauges. You should find :

ϕ
(2)
lrnz = − n · p̈

8πc2
(12)

Relate the two results for (ϕ,A) via a gauge transformation.

(f) Determine the electric field to second order in 1/c using the Lorenz and Coulomb
gauges. Notice how particularly simple the Coulomb gauge is for this purpose. You
should find (in either gauge)

E(2) = −n(n · p̈) + p̈

8πrc2
(13)

(g) At what radius does E(2) become comparable to E(0)
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Solution

(a) See lecture. In the Lorentz gauge

−�ϕ =ρ (14)

−�A =
j

c
(15)

In the Coulomb gauge

−∇2ϕ =ρ (16)

−�A =
j

c
+

jD
c

(17)

where the displacement current is

jD
c

= −1

c
∂t∇ϕ (18)

(b) In the Coulomb gauge

(
1

c2
∂2t −∇2)A = j/c+

1

c
∂t(−∇ϕ) (19)

To first order in 1/c we may neglect the second derivative ∂2t . We may also replace ϕ
with its zero order solution

−∇2A = j/c+
1

c
∂t(−∇ϕ(0)) (20)

The solution to this equation is

A(t, r) =

∫
d3r0

j(t, r0)/c+ jD(t, r0)/c

4π|r − r0|
(21)

where the displacement current is

jD(t, r0) = ∂tE
(0) = −∂t(∇ϕ(0)) (22)

In the Lorenz Gauge

(
1

c2
∂2t −∇2)A = j/c (23)

and to first order in 1/c

A(t, r) =

∫
d3r0

j(t, r0)/c

4π|r − r0|
. (24)

In the dipole approximation from the previous problem

j = ṗ(t)δ3(r − r′) , (25)

where r′ is the position of the dipole, i.e. r′ = 0 in this problem

So

Alrnz(t, r) =
ṗ

4πrc
(26)
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(c) In the Coulomb gauge we have

Acoul = Alrnz +

∫
d3r0

jD(t, r0)/c

4π|r − r0|
(27)

leading to

Acoul = Alrnz −∇
1

c
∂t

∫
d3r0

ϕ(0)(t, r0)

4π|r − r0|︸ ︷︷ ︸
Integral

(28)

Substitute

ϕ(t, r0) =
p(t) cos(θ0)

4πr20
(29)

into the underlined integral, use the expansion

1

4π|r − r0|
=
∑
`m

1

2`+ 1

r`<
r`+1
>

Y`m(θ, φ)Y`m(θ0, φ0), , (30)

and perform the integrals over angles θ0, φ0. The angular integrals are simplified by
noting that

cos(θ0) = AY10(θ0, φ0) (31)

with A a constant, and thus only the ` = 1 and m = 0 term survives the integration,
yielding AY10(θ, φ) = cos θ. The radial integration gives∫

d3r0
ϕ(0)(t, r0)

4π|r − r0|
=p(t) cos(θ)

∫ ∞

0

r20dr0
4πr20

1

3

r<
r2>

(32a)

=
p(t) cos(θ)

4π

[∫ r

0

dr0
r0
3r2

+

∫ ∞

r

dr0
r

3r20

]
(32b)

=
p(t) cos(θ)

4π

[
1

6
+

1

3

]
(32c)

=
p(t) cos(θ)

8π
(32d)

=
p(t) · n

8π
(32e)

where n = r̂.

Then note the derivative

∂inj =
δij − ninj

r
(33)

so the i-th component of the gradient is

[∇(n · ṗ)]i =
ṗi − (ṗ · n)ni

r
(34)

When combined with ṗ/(4πrc) from Alrnz in Eq. (28), we find the quoted result in
Eq. (10)
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(d) The two expressions for A differ by a gradient, and the curl of a gradient is zero. So
B = ∇×A is the same for either form of A.

(e) In the Lorenz gauge we should solve

(
1

c2
∂2t −∇2)ϕlrnz = ρ (35)

Setting up an expansion through second order in 1/c

ϕ = ϕ(0) + ϕ(2) (36)

At zeroth order we have the Laplace equation

−∇2ϕ
(0)
lrnz = ρ (37)

while at second (and higher order) the zeroth order solution acts like a source for ϕ(2)

−∇2ϕ
(2)
lrnz = − 1

c2
ϕ̈
(0)
lrnz . (38)

The zeroth order solution is simply the potential due to a dipole

ϕ
(0)
lrnz(t, r0) =

p(t) · n0

4πr20
(39)

where n0 = r̂0. Then the scalar potential at second order (i.e. the solution to Eq. (38))
can be written down immediately by analogy to the Coulomb law

ϕ
(2)
lrnz(t, r) = −

∫
d3r0

p̈(t) · n0

c2(4πr20)

1

4π|r − r0|
(40)

The integral is the same as before (see Eq. (32)) yielding

ϕ
(2)
lrnz(t, r) = − p̈ · n

8πc2
(41)

Of course the integral should be the same – we are solving the same problem. Chang-
ing gauges merely shuffles the problem around. (This is prosaically referred to as
conservation of shit.)

Thus the full result (through 1/c2) for the Lorenz gauges is

ϕlrnz(t, r) =
p(t) · n

4πr2
− p̈ · n

8πc2
(42a)

Alrnz(t, r) =
ṗ

4πcr
(42b)

In the Coulomb gauge the zeroth order potential (the potential from a dipole) is exact
to all orders, but the vector potential is more complicated as we have seen:

ϕcoul(t, r) =
p(t) · n

4πr2
(43a)

Acoul(t, r) =
ṗ

4πrc
−∇(n · ṗ)

8πc
(43b)
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The two gauges are related by a gauge transformation

Λ(t, r) =
ṗ · n
8πc

(44)

where

ϕlrnz(t, r) =ϕcoul −
1

c
∂tΛ(t, r) (45)

Alrnz(t, r) =Acoul +∇Λ (46)

(f) To compute the electric field to quadratic order in the Coulomb gauge

E =−∇ϕ(0) − 1

c
∂tA (47)

=E(0) + E(2) (48)

The first term arises at zeroth order and is the usual

E(0) = −∇(
p · n
4πr2

) =
3n(n · p)− p

4πr3
(49)

while the second term arises from the coulomb gauge vector potential at first order

E(2) = −1

c
∂tA

(1) = −1

c
∂t

[
n(n · ṗ) + ṗ

8πrc

]
(50)

which gives the quoted result. In the Lorenz gauge

E = −∇ϕ(0)
lrnz −∇ϕ

(2)
lrnz −

1

c
∂t∂A

(1) (51)

and

E(2) =−∇ϕ(2)
lrnz −

p̈

4πrc2
(52)

=− n(n · p̈) + p̈

8πrc2
(53)

(g) Comparison

E(0) ∼ p

r3
(54)

while

E(2) ∼ p̈

c2r
∼ ω2p

c2r
(55)

Thus the two are equal when

r ∼ c

ω
(56)
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