Wires pg. 1
Inductance in Wires
(1) $u_{B}=\frac{1}{2} \int_{V} \underset{C}{\vec{f}} \cdot \vec{A} d^{3} x=\frac{1}{2} \int_{V} \vec{H} \cdot \vec{B}$

- $U_{B}$ is a property of state
(2) $\delta u_{B}=\int_{V} \frac{\vec{j}}{c} \cdot \delta \vec{A}$
- For a set of wires: $\vec{\jmath} d^{3} x=$ Idle


Then find summed over $a=$ loops
(1) $u=\frac{1}{2} I_{-a} \Phi_{a}$

$$
\Phi_{a}=\oint_{\substack{a-t h \\ \text { loop }}} \vec{A} \cdot d \vec{l}=\int \vec{B} \cdot d \vec{A}
$$

(2) $\delta u=\frac{I}{-a} \delta \Phi_{a} \quad=$ flux through $a^{- \text {th }}$ loop

Note that, $\vec{A}(x)=\mu \int_{V} \frac{j k\left(x_{0}\right)}{4 \pi\left|x-x_{0}\right|}$
(A) $U_{\beta}=\frac{\mu}{2} \int d^{3} x d^{3} x_{0} \frac{\vec{f}(x) / c \cdot \frac{f}{j}\left(x_{0}\right) / c \text { under intercl }}{4 \pi\left|x-\vec{x}_{0}\right|}$ of $\vec{x}+\vec{x}_{0}$

Wires pg. 2

- So for a set of wires

$$
u=\frac{1}{2} I_{a} m_{a b} I_{b}
$$

inductance matrix
$M_{11}$ is the self inductance of the first loop
$M_{12}$ is the mutual inductance between the lIst +2 nd loops. ( $m_{12}=M_{21}$ since $E q$ \& is

- Then since $U_{B}=\frac{1}{2} I_{\bar{C}} \Phi_{a}$ symmetric.)

$$
{\frac{\dot{\Phi}}{\bar{c}^{a}}}=m_{a b} I_{b}
$$

And for any circuit

$$
E_{a}^{b a c k ~ e m f ~ i n ~ a ~}
$$

Problem on Mutual Inductance of Force

- Compute the mutual inductance of a ring and a long straight wire


The force between the wire and ring is attractive If currents are parallel they attract, if they are anti-parallel they repel (i.e. opposite to charges). Here the bottom end of the ring is closer to the wire and is attractive (the currents are parallel), while the upper end of the ring is farther away experiencing a weaker repulsive force (the currents are anti-parallel).

- Solution

$$
\begin{aligned}
U_{12} & =\int_{c}^{\text {current in wire one }} \vec{J}_{c} \cdot \vec{A}_{2} \\
& =\frac{I^{\prime}}{c} \cdot \int \vec{A}_{2} \cdot d \vec{l}_{1}=\frac{I_{1}}{c} \int \vec{B}_{2} \cdot d \vec{a}_{1}=\frac{I_{1}}{c} \Phi_{21}
\end{aligned}
$$

- Then the field from the wire is

$$
\vec{B}_{2}=\frac{I_{2} l_{c}}{2 \pi \rho} \hat{\phi} \quad \psi_{d} \hat{B_{d}}
$$

So we need to integrate this field from the wire over the area of the ring

Mutual Inductance of Force pg. 2


- We have

$$
\begin{aligned}
& u_{12}=\int_{D-R}^{D+R} d \rho \frac{I_{1} I_{2}}{C^{2}} \frac{2\left(R^{2}-(\rho-D)^{2}\right)^{1 / 2}}{2 \pi \rho} \\
& u_{12}=\frac{I_{1} I_{2}}{C^{2}}\left[D-\sqrt{D^{2}-R^{2}}\right]
\end{aligned}
$$

So $\quad m_{12}=\frac{1}{c^{2}}\left(D-\sqrt{D^{2}-R^{2}}\right)$

- Then we might want to compute the force between the ring and the wire. To do this we ask about the change in $U_{B}$, as the distance between the ring and the wire is changed with currents fixed:


Mutual Inductance and Force pg. 3

$$
\begin{aligned}
& \delta u=\frac{1}{2} I_{a} \delta m_{a b} I_{b} \text { We are keeping the currents fixed here } \\
& I_{a} \delta \Phi_{a}=I_{a} \delta m_{a b} I_{b} \leftarrow \delta W_{b a t t}
\end{aligned}
$$

So

$$
\delta U_{\beta}-I_{c} \delta \Phi_{a}=-\frac{1}{2} I_{a} \delta m_{a b} I_{b}=-\vec{F} \cdot \delta \overrightarrow{r i n g}
$$

So

$$
F_{\text {ring }}^{x}=+\frac{\delta m_{a b} \frac{1}{\delta D} I_{c} I_{b}=\frac{I_{1} I_{2}}{c^{2}}\left(1-\frac{D}{\sqrt{D^{2}-R^{2}}}\right), ~(1)}{}
$$


indicates an attractive force i.e. force in negative $x$-direction
$\frac{}{}$

