
11 Radiation in Non-relativistic Systems

11.1 Basic equations

This first section will NOT make a non-relativistic approximation, but will examine the far field limit.

(a) We wrote down the wave equations in the covariant gauge:

−�Φ =ρ(to, ro) (11.1)

−�A =J(to, ro)/c (11.2)

The gauge condition reads
1

c
∂tΦ +∇ ·A = 0 (11.3)

(b) Then we used the green function of the wave equation

G(t, r|toro) =
1

4π|r − ro|
δ(t− to +

|r − ro|
c

) (11.4)

to determine the potentials (Φ,A)

Φ(t, r) =

∫
d3xo

1

4π|r − ro|
ρ(T, ro) (11.5)

A(t, r) =

∫
d3xo

1

4π|r − ro|
J(T, ro)/c (11.6)

Here T (t, r) is the retarded time

T (t, r) = t− |r − ro|
c

(11.7)

(c) We used the potentials to determine the electric and magnetic fields. Electric and magnetic fields in
the far field are

Arad(t, r) =
1

4πr

∫
ro

J(T, ro)

c
(11.8)

and

B(t, r) =− n
c
× ∂tArad (11.9)

E(t, r) =n× n
c
× ∂tArad = −n×B(t, r) (11.10)

In the far field (large distance limit r →∞) limit we have

T = t− r

c
+ n · ro

c
(11.11)

And we recording the derivatives (
∂

∂t

)
ro

=

(
∂

∂T

)
ro

(11.12)(
∂

∂ro

)
t

=

(
∂

∂ro

)
T

+
n

c

(
∂

∂T

)
ro

(11.13)
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(d) We see that the radiation (electric field) is proportional to the transverse piece of the ∂tJ

− n× (n× ∂tJ) = ∂tJ − n(n · ∂tJ) (11.14)

In general the transverse projection of a vector is

− n× (n× V ) = V − n(n · V ) (11.15)

(e) Power radiated per solid angle is for r →∞ is

dW

dtdΩ
=
dP (t)

dΩ
= energy per observation time per solid angle (11.16)

and

dP (t)

dΩ
=r2S · n (11.17)

=c|rE|2 (11.18)

11.2 Examples of Non-relativistic Radiation: L31

In this section we will derive several examples of radiation in non-relativistic systems. In a non-relativistic
approximation

T = t− r

c
+
n

c
· ro︸ ︷︷ ︸

small

(11.19)

The underlined terms are small: If the typical time and size scales of the source are Ttyp and Ltyp, then
t ∼ Ttyp, and ro ∼ Ltyp, and the ratio the underlined term to the leading term is:

Ltyp

cTtyp
� 1 (11.20)

This is the non-relativistic approximation. For a harmonic time dependence, 1/Ttyp ∼ ωtyp, and this says
that the wave number k = 2π

λ is small compared to the size of the source, i.e. the wave length of the emitted
light is long compared to the size of the system in non-relativistic motion:

2πLtyp

λ
� 1 (11.21)

(a) Keeping only t−r/c and dropping all powers of n·ro/c in T results in the electric dipole approximation,
and also the Larmour formula.

(b) Keeping the first order terms in
n

c
· ro (11.22)

results in the magnetic dipole and quadrupole approximations.

The Larmour Formula

(a) For a particle moves slowly with velocity and acceleration, v(t) and a(t) along a trajectory r∗(t)

(b) We make an ultimate non-relativistic approximation for T

T ' t− r

c
≡ te (11.23)

Then we derived the radiation field by substituting the current

J(te) = ev(te)δ
3(ro − r∗(te)) (11.24)

into the Eqs. (11.8),(11.9), and (11.17) for the radiated power
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(c) The electric field is

E =
e

4πrc2
n× n× a(te) (11.25)

Notice that the electric field is of order

E ∼ e

4πr

a(te)

c2
(11.26)

(d) The power per solid angle emitted by acceleration at time te is

dP (te)

dΩ
=

e2

(4π)2c3
a2(te) sin2 θ (11.27)

Notice that the power is of order

P ∼ c|rE|2 ∼ a2

c3
(11.28)

(e) The total energy that is emitted is

P (te) =
e2

4π

2

3

a2(te)

c3
(11.29)

The Electric Dipole approximation

(a) We make the ultimate non-relativistic approximation

J(t− r

c
+
n · ro
c

) ' J(t− r

c
) (11.30)

Leading to an expression for Arad

Arad =
1

4πr

1

c
∂tp(te) (11.31)

where the dipole moment is

p(te) =

∫
d3xo ρ(te)ro (11.32)

(b) The electric and magnetic fields are

Erad =n× n× 1

c
∂tArad (11.33)

=
1

4πrc2
n× n× p̈(te) (11.34)

Brad =n×Erad (11.35)

(c) The power radiated is

dP (te)

dΩ
=

1

16π2

p̈2(te)

c3
sin2 θ (11.36)

(d) For a harmonic source p(te) = poe
−iω(t−r/c) the time averaged power is

P =
1

4π

ω4

3c3
|po|2 (11.37)
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The magnetic dipole and quadrupole approximation: L32

(a) In the magnetic dipole and quadrupole approximation we expand the current

J(T ) ' J(te)︸ ︷︷ ︸
electric dipole

+
n · ro
c

∂tJ(te, ro)/c︸ ︷︷ ︸
next term

(11.38)

The next term when substituted into Eq. (11.8) gives rise two new contributions to Arad, the magnetic
dipole and electric quadrupole terms:

Arad = AE1
rad︸ ︷︷ ︸

electric dipole

+ AM1
rad︸ ︷︷ ︸

mag dipole

+ AE2
rad︸ ︷︷ ︸

electric-quad

(11.39)

(b) The magnetic dipole contribution gives

AM1
rad =

−1

4πr

n

c
× ṁ(te) (11.40)

where m

m ≡ 1

2

∫
ro

ro × J(te, ro)/c , (11.41)

is the magnetic dipole moment.

(c) The structure of magnetic dipole radiation is very similar to electric dipole radiation with the duality
transformation

E-dipole → M-dipole (11.42)

p → m (11.43)

E → B (11.44)

B → −E (11.45)

(d) The power is
dPM1(te)

dΩ
=
m̈2 sin2 θ

16π2c3
(11.46)

(e) The power radiated in magnetic dipole radiation is smaller than the power radiated in electric dipole
radiation by a factor of the typical velocity, vtyp squared:

PM1

PE1
∝ m2

p2
∼
(vtyp

c

)2
(11.47)

where vtyp ∼ Ltyp/Ttyp

Quadrupole rdiation

(a) For quadrupole radiation we have

Aj
rad,E2 =

1

24πr

ni
c2
Q̈ij (11.48)

where Qij is the symmetric traceless quadrupole tensor.

Qij =

∫
d3xoρ(te, ro)

(
3rior

j
o − r2oδij

)
(11.49)

(b) The electric field is

Erad =
−1

24πrc3
[ ...
Q · n− n(n> ·

...
Q · n)

]
(11.50)

where (more precisely) the first term in square brackets means ni
...
Qij , while the second term means,

(n`
...
Q`mnm)nj .
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(c) A fair bit of algebra shows that the total power radiated from a quadrupole form is

P =
1

720πc5
...
Qab

...
Qab (11.51)

(d) For harmonic fields, Q = Qoe−iωt , the time averaged power is rises as ω6

P =
c

1440π

(ω
c

)6
Q2
o (11.52)

(e) The total power radiated radiated in quadrupole radiation to electric-dipole radiation for a typical
source size Ltyp is smaller:

PE2

PE1
∼
(
ωLtyp

c

)2

(11.53)

11.3 Transition to the radiation zone

(a) Starting from the general expression Eq. (11.5), we studied the exact fields of an electric dipole. The
current for the dipole is

J(to, ro) =∂top(to)δ
3(ro) (11.54)

ρ(to, ro) =− p(to) · ∇r0
δ3(ro) (11.55)

Performing the integrals in Eq. (11.5), and differentiating to find the electric and magnetic fields we
have

E(t, r) =
3(n · p(te))− p

4πr3︸ ︷︷ ︸
near field

+
3n(n · ṗ(te))− ṗ(te)

4πr2c︸ ︷︷ ︸
intermediate zone

+
−p̈(te) + n(n · p̈(te))

4πrc2︸ ︷︷ ︸
radiation field∝ n× n× p̈

(11.56)

(11.57)

and

B(t, r) = −n× ṗ(te)

4πr2c︸ ︷︷ ︸
quasi-static filed

+ −n× p̈(te)

4πrc2︸ ︷︷ ︸
radiation field

(11.58)

(b) The successive terms trade powers of 1/r for powers of 1/c ∂t. The radiation field decreases as 1/r.

(c) Looking at the electric fields, the first term is the static electric field of a dipole (as we derived in
electrostatics), the last term is the radiation field of the static dipole.

(d) Looking at the magnetic field. The first term is what we derived in a quasi-static approximation, and
the second term is the radiation field.

(e) The electric and magnetic duality says that the fields of a magnetic dipole can be found with the
replacements E → B, and B → −E, p→m

11.4 Attenas

(a) In an antenna with sinusoidal frequency we have

J(T, ro) = e−iω(t−
r
c+

n·ro
c )J(ro) (11.59)
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(b) Then the radiation field for a sinusoidal current is:

Arad =
e−iω(t−r/c)

4πr

∫
ro

e−iω
n·ro

c J(ro)/c (11.60)

In general one will need to do this integral to determine the radiation field.

(c) The typical radiation resistance associated with driving a current which will radiate over a wide range
of frequencies is Rvacuum = cµo =

√
µo/εo = 376 Ohm.
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