Last Times (pga)
(1) $\nabla \cdot E=\rho$

Sourced

$$
\begin{aligned}
& \nabla \times B=J / C+\frac{1}{c} \partial E / \partial t
\end{aligned}
$$

(2) Waves (in lorentz gauge $\gamma_{c} \partial_{t} \varphi+\nabla \cdot A=0$)

$$
\begin{aligned}
& -\square \varphi=\rho \\
& -\square \vec{A}=J / C
\end{aligned}
$$

(3) Solve using green $f_{c n}$:

$$
\begin{aligned}
& \vec{A}(t, 1)=\int d^{3} r_{0} \frac{1}{4 \pi\left|\vec{r}-\vec{r}_{c}\right|} J\left(T, r_{0}\right) \\
& T=t-\left|\stackrel{\rightharpoonup}{r}-\vec{r}_{0}\right| \leftarrow \text { retarded } \\
& \begin{aligned}
& \cdot(t, r)=\text { observation } \\
& \text { point }
\end{aligned}
\end{aligned}
$$

Last Times pg. 2
At large distances can approximate, even for highly relativistic sources, $\quad r \gg \lambda_{\text {typ }} \sim C T_{\text {typ }}$

$$
\vec{A}_{\text {rad }}=\frac{1}{4 \pi r} \int \frac{J}{c}\left(t-\frac{r}{c}+\frac{\vec{n} \cdot \vec{r}_{0}}{c}, r_{0}\right) d^{3} r_{0}
$$

ie.

$$
\begin{aligned}
T & =t-\frac{r}{c}+\frac{n \cdot r}{c} \\
E_{\text {rad }} & =\vec{n} \times \vec{r} \times \frac{1 \partial}{c} \vec{A}_{\text {rad }} \\
B_{\text {rad }} & =-n \times \frac{1}{c} \frac{\partial A_{\text {rad }}}{\partial t}
\end{aligned}
$$

(4) Then we concentrated first on non rel sources where, $l_{t_{y p}} \ll c T_{t_{y p}}$ or $L \ll \lambda_{t_{y p}}$. Se for non-rel source, this is the picture
(near zone)
(far zone)

$$
\lambda_{\text {typ }}
$$

what we study now
studied (1) quasi-statics

Last Times pg. 3
For non-relativistic sources $n \cdot \vec{r} / c$ is small compared

Source Since $\frac{\text { n. }}{c}$. is of order $\frac{L_{t y p}}{c}<t \sim T_{\text {typ }}$.
Thus in a nonorelativistic approximation we write:

$$
\vec{J}\left(t-r+\frac{n \cdot r}{c}\right) \simeq J(t-r)+\frac{n \cdot r}{c} \frac{\partial J}{c}\left(t-\frac{r}{c}\right)+r
$$

So, we define $t_{e}=t-r / c=e m i s s i o n ~ t i n e ~ t o ~ S a v e ~ w r i t i n g: ~$
(5) Two Examples So for:
a) Radiation from a charged partick. In this case one has simply:

$$
\int \frac{J}{\bar{c}}\left(t_{e}\right) d^{3} r=\frac{e V\left(t_{e}\right)}{\bar{c}}
$$

and

$$
\begin{aligned}
& A_{\text {fad }}=\frac{e}{4 \pi r} \frac{\vec{V}\left(t_{e}\right)}{c} \quad \text { transverse piece } \\
& E_{\text {rad }}=n \times n \times \frac{1}{c} \frac{\partial A_{r a d}}{\partial t}=\frac{e}{4 \pi r} \frac{-\vec{a}_{r}\left(t_{t}\right)}{c^{2}}
\end{aligned}
$$

Last Times pg. 4
a) continued..., Leading to the power radiated

$$
\begin{aligned}
& P=\int r^{2} d \Omega c(E \times B) \\
& P=\frac{e^{2}}{4 \pi} \frac{2}{3} \frac{a^{2}\left(t_{e}\right)}{c^{3}} \quad \begin{array}{l}
\text { for the power } \\
\text { radiated }
\end{array}
\end{aligned}
$$

b) Mutipole expansion of Localized source
(6) Multipole Expansion and electric Dipole

$$
\vec{J}\left(t-\frac{r}{c}+\frac{n \cdot r_{c}}{c}\right)=J\left(t_{c}\right)+\frac{n \cdot r_{c}}{c} \partial_{t} J+\ldots
$$

First we had the electric dipole:
dipole moment

$$
\vec{A}_{r_{\text {ad }}}=\frac{1}{4 \pi r} \int_{r_{0}} \frac{J}{c}\left(t_{e}\right)=\frac{1}{4 \pi r}\left[\frac{\dot{p}\left(t_{e}\right)}{c}\right]
$$

$\vec{J}=\partial_{1} \vec{p} \leftarrow$ capitol \vec{P} is the dipole moment/volume, integrating over volume gives the dipole moment \vec{p}

Last Time pg. 5
Them, note that this forms a spherical wave. Take $\vec{p}(t)=p_{0} e^{-i \omega t}$, then since we evaluate, $t_{e}=t-r$:

$$
\vec{A}_{r a d}=-i \omega p_{0} e^{-i \omega(t-r / c)} \frac{4 \pi r c}{} \Longleftarrow \text { outgoing spherical }
$$

Then we have:

$$
\vec{E}_{\text {rad }}=n \times n \times \frac{1}{c} \frac{\partial A_{\text {rad }}}{\partial t}=\frac{1}{4 \pi r}\left[-\stackrel{\rightharpoonup}{e}_{T}\left(t_{e}\right)\right]
$$

After computing the power, we find for a harmonic source, $p=p_{0} e^{-i \omega t}$:

$$
\begin{aligned}
&\left\langle\frac{d P}{d \Omega}\right\rangle=c\left|r E_{r a d}\right|^{2} \\
&=\frac{\omega^{4}}{\mid c \pi^{2} c^{3}} \frac{\mid p_{0}^{2}}{2} \\
& d p / d \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { time }=\frac{\omega^{4}}{\mid 6 \pi^{2} c^{3}} \frac{|p|^{2}}{2} \sin ^{2} \theta \\
& d p / d \Omega
\end{aligned}
$$

Then we found a radiation pattern shown to the lett. The characteristic features are:
(1) $P \propto \omega^{4}$
(2) $\sin ^{2} \theta$
(3) Polarization

Magnetic Dipole (MI) \& Electric Quadrupole (E2)
Now we cant confine with the expansion:

$$
J\left(t-\frac{r}{c}+\frac{n \cdot r_{0}}{c}, r\right) \simeq J\left(t_{e}, r_{c}\right)+\underbrace{\frac{n \cdot r}{c} \underbrace{\partial J}_{\text {dipole }}\left(t_{e}, r\right)+\ldots}_{\text {Electric }} \underbrace{\partial t}_{\text {magnetic dipole }}
$$

So the next term gives.

$$
\begin{aligned}
& \vec{A}_{r a d}=\frac{1}{4 \pi r} \int_{r_{0}} \frac{\vec{n} \cdot \vec{r}_{0}}{\frac{\partial J}{\partial t}}\left(t-r / c, r_{0}\right) / c \\
& A_{r a d}^{j}=\frac{n}{4 \pi r} \int_{r_{0}}^{r_{0}^{i}} r_{0 J}^{\partial}\left(t_{e}, r_{0}\right) / c
\end{aligned}
$$

As. always tensors $r_{0}^{i} \partial J y / \partial t$ should be broken up into its irreducable components and analyzed separately, We will see that each irred comp gives:

$$
\underbrace{r_{0}^{i} \partial_{t} J^{j}=}_{\text {Quadrupole rad }} \underbrace{\frac{1}{2}\left(r_{0}^{i} \partial_{t} J^{j}+r_{0}^{j} \partial_{t} J^{i}-\frac{2}{3} \delta^{i j} \vec{r}_{0} \cdot \partial_{t} \vec{J}\right)+\frac{1}{2} \varepsilon^{i{ }^{i j}}\left(\vec{r}_{0} \times \partial_{t} \vec{J}\right)}_{\vdots}
$$

We weill first analyze
the magnetic dipole case.
The general case is a sum of these $t e$-dipole term a monopode doesn't
The contribution to A_{rad}^{j} from this term is proportional n^{j} (prove me). When radiate computing the E-field we take the piece of $\overrightarrow{A_{\text {rad }}}$ which is perpendicular to \vec{n}

Magnetic Dipole pg 2
For mag-dipole (sign because I reversed i,j relative to last

$$
\begin{aligned}
& \vec{A}^{\vec{A}^{j}}=\frac{1}{4 \pi r c} \int_{r_{0}}^{-\frac{1}{2}} \varepsilon^{j i k} n ;\left(\vec{r}_{0} \times \partial_{t} \vec{J} / c\right)_{k} \\
& \vec{A}_{\mathrm{rad}}=-\frac{1}{4 \pi r} \frac{\vec{n}}{c} \times \frac{1}{2} \int_{0} \vec{r}_{0} \times \partial_{t} \vec{J}\left(t_{c}, r_{0}\right) / c \\
& \vec{A}_{r a d}=-\frac{1}{4 \pi r} \frac{\vec{n}}{c} \times \stackrel{\stackrel{\rightharpoonup}{m}}{ }\left(t_{e}\right) \quad{ }^{0} \quad \text { ave defined } \quad \vec{m}=\frac{1}{2} \int \vec{r} \times \vec{J} / c
\end{aligned}
$$

So

$$
\left.\begin{array}{rl}
\vec{B}_{r a d} & =-\vec{n} \times \frac{1}{c} \frac{\partial \vec{A}_{r a d}}{\partial t} \\
& =\vec{n} \times \vec{n} \times \frac{\vec{m}}{4 \pi} r\left(t_{e}\right) \\
& =\frac{1}{4 \pi r}\left(-\overrightarrow{\vec{m}}_{r}\right. \\
\vec{c}^{2}
\end{array}\right)
$$

Compare this with the electric dipole. E is replaced with B, and \boldsymbol{p} is replaced with \boldsymbol{m}

Then the radiated power is:

$$
\frac{d P}{d \Omega}=r^{2}|C E \times B \cdot \vec{n}|^{2}=\frac{\ddot{m}^{2}}{16 \pi^{2} c^{3}} \sin ^{2} \theta
$$

So the angular distribution of power $m(y)=m_{0} e^{-i \omega(t-r / c)}$ is the same as the electric
 case, but the polarization is reversed. This a reflection of Electric - Magnetic duality which in this context means that the fields of the magnetic dipole are related to the magnetic dipole via the rules:

$$
\begin{aligned}
\text { E-dipole } & \longrightarrow M \text {-dipole } \\
\vec{P} & \longrightarrow \vec{m} \\
\vec{E} & \longrightarrow \vec{B} \\
\vec{B} & \rightarrow-\vec{E}
\end{aligned}
$$

Relative strengths of EL $\& M I$ radiation

- If a system has a magnetic dipole and an electric dipole, then both contribute to the radiation
- Lets compare the size of the two:

$$
\vec{p} \sim e L
$$

So:

$$
\frac{m}{p} \sim \frac{V}{c} \Leftarrow \text { small }
$$

And thus the radiated power is smaller for a magnetic dipole by $(\mathrm{V} / \mathrm{C})^{2}$

$$
\frac{P^{M I}}{P^{M}} \times \frac{m^{2}}{P^{2}} \times\left(\frac{v}{c}\right)^{2}
$$

Quadrupole Radiation

- Now lets compute Quadrupole radiation The potential fields φ and A are sourced by
Eq. $1 \quad \frac{1}{2}\left(r_{\partial}^{i} \partial_{t} J^{j}+r_{0}^{j} \partial_{t} J^{i}-\frac{2}{3} \delta^{i j} r_{0 t} \partial_{t} J^{l}\right) \equiv \partial_{t} T^{i j}$

Using

$$
\frac{\partial r^{j}}{\frac{\partial r_{l}}{0}}=\delta^{j} \quad \text { and } \quad \frac{\partial J^{l}\left(r_{0}\right)}{\partial r_{0}^{l}}=-\partial_{t} \rho
$$

We have
The second term subtracts off the $\partial J^{\ell} / \partial r_{o}^{\ell}$ term of the first term which we don't have in

$$
T^{i y}=\frac{1}{2} \frac{2}{\partial r^{l}}(J^{l}\left(r_{0}^{i} r_{0}^{j}-\left(\delta^{i j} r_{0}^{2}\right)\right)=\underbrace{\frac{\partial J_{0}^{l}}{2}{ }_{2}^{l}\left(r_{0}^{i} r_{0}^{j}-\frac{1}{3} r_{0}^{2} \delta^{i j}\right)}_{-\frac{\partial f}{\partial t}}
$$

So then

$$
\begin{aligned}
A_{r a d}^{j} & =\frac{n_{i}}{4 \pi r c} \int_{r_{0}} \partial_{t} \frac{T_{i}^{i j}}{c} \\
& =\frac{n_{i}}{4 \pi r c^{2}} \int_{\int_{0}} \frac{1}{2} \ddot{p}\left(t_{e}\right)\left(r_{0}^{i} r_{0}^{j}-\frac{1}{3} r_{0}^{2} \delta^{i j}\right) \\
& \equiv Q^{00} Q^{i j} / 6 \\
\frac{A^{j}}{r_{\text {ad }}} & =\frac{1}{24 \pi r c^{2}} n_{i} Q^{i j}
\end{aligned}
$$

Or in matrix notation

$$
\begin{aligned}
& \vec{A}=\frac{1}{24 \pi r c^{2}} \cdot \ddot{Q} \cdot n \quad \vec{A}_{T}=\vec{A}-\vec{n}(\vec{n} \cdot \vec{A}) \\
&=\left(\mathbb{1}-n n^{T}\right) A \\
& \vec{E}=-\frac{1}{c} \frac{\partial A}{\partial t}=-\frac{1}{24 \pi r c^{3}}\left(1-n T^{T}\right) \cdot \ddot{Q} \cdot n
\end{aligned}
$$

transuere component of \vec{A}
So

$$
\vec{E}=-\frac{1}{24 \pi r c^{3}}\left[\ddot{Q} \cdot n-\vec{n}\left(n^{\top} \cdot \ddot{Q} \cdot n\right)\right]
$$

Now

$$
\frac{d P}{d \Omega}=c|r E|^{2}=\frac{1}{(24 \pi)^{2} c^{5}}\left[\ddot{Q} \cdot n-n\left(n^{T} \ddot{Q} n\right)\right]^{2}
$$

Take a specific component to gain interition

$$
Q^{\text {is }}=\left(\begin{array}{c|c}
-Q_{z i z} / 2 & \\
-Q_{2 z}^{\prime 2} & \\
& Q_{z z}
\end{array}\right) \text { only } Q_{z z} \text { specified }
$$

Then take

$$
\vec{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

$$
\frac{d P}{d \Omega}=\frac{1}{(24 \pi)^{2} c^{5}}\left[\frac{9}{16} Q_{z z}^{2} \sin ^{2}(2 \theta)\right]
$$

So we plot

So we see two characteristic lobes associated with Quadrupole radiation.

It is possible to compute the total power is (Homework) in general:

$$
\begin{aligned}
& P=\int d \Omega \frac{d P}{d \Omega} \\
& P=\frac{1}{720 \pi c^{5}} \ddot{Q}^{i y} \ddot{Q}_{i j}
\end{aligned}
$$

For harmonic Sources $Q(t)=Q_{0} e^{-i \omega t}$, pick up $\frac{1}{2}$ from averag over time:

$$
P=\frac{c}{1440 \pi}\left(\frac{\omega}{c}\right)^{6} Q_{0}^{i y} Q_{0 . i}^{*}
$$

\rightarrow one sees a characteristic w^{6} dependence

Comparison (16) Dipole Radiation
e-dipole

- For dipole radiation,p~eL, and

$$
\begin{aligned}
& P \sim c\left(\frac{\omega}{c}\right)^{4} P^{2} \\
& \text { power } \\
& \sim c e^{2} k^{2}(k L)^{2} \quad k=\frac{\omega}{c}=\frac{2 \pi}{\lambda}
\end{aligned}
$$

- While for Quadrupole radiation, the power is

$$
P \sim c\left(\frac{\omega}{c}\right)^{6} Q_{0}^{2} \text {, where, } Q_{0} \sim e L^{2}
$$

So

$$
P \sim c e^{2} k^{2}(k L)^{4}
$$

- So units check:
velocity x Force

$$
c \overline{e^{2} k^{2}}=\text { Energy/time }
$$

So we see that quadrupole radiation is suppressed relative to (Electric)dipde radiation by, $(k L)^{2}$, ie. or

$$
\left(\bar{\lambda}_{t_{y p}}\right)^{2}
$$

