## Probing spatial anisotropy at freeze-out with HBT





Riken/BNL Flow Workshop, 11/03

HBT in the context of a flow workshop

HBT relative to the reaction plane in Au+Au collisions

Sensitivity of HBT( $\Phi$ ) to freeze-out parameters

Initial vs. final eccentricity of source







# HBT

- Goal: quantify contributions to space-time evolution (**STE**) of system
  - Lifetime and duration of emission
  - Spatial extent of system
  - Collective flow
- Single-particle  $p_T$  spectra &  $v_2$  also determined by STE, but...
- Bose-Einstein  $\hat{p}$  correlations  $\rightarrow$  disentangle STE
  - 1. Pairs of identical pions experience B-E correlations
  - 2. Hanbury-Brown Twiss interferometry: characterize correlations through intensity interferometry
  - Width of correlation peak as q→0 reflects "length of homogeneity"

static source: HBT radii \_ true geometrical size of system
dynamic source: HBT radii \_ x-p correlations reduce observed radii









# Why study HBT( $\Phi$ )?

- HBT( $\Phi$ ) provides measure of anisotropies in source shape
- Source shape at freeze-out ↔ evolution of system "How much of initial spatial deformation still exists (if any) at freeze-out?"



## The (transverse) Hydro Picture



## Predictions from hydrodynamics

• <u>Hydrodynamics</u>: initial out-of-plane anisotropy may become in-plane



# Predictions from hydrodynamics

• <u>Hydrodynamics</u>: initial out-of-plane anisotropy may become in-plane





# Summary of HBT( $\Phi$ ) procedure

## What we measure

HBT radii as a function of emission angle – corresponds to homogeneity regions



## 3 Why we're interested

The size and orientation of the source at freeze-out places tight constraints on expansion/evolution



## 2 What we expect to see:

2<sup>nd</sup>-order oscillations in HBT radii analogous to momentum-space (flow)



What should be remembered

The form of the oscillations (sin vs. cos, harmonics) are governed by geometrical symmetries of the source.

riken/bnl - 11/2003

## Corrections applied to data



- Single particle *p*-resolution (δp/p ~ 1%) slightly reduand R<sub>i</sub>'s
- Correlation functions corrected for this effect, HBT increase 1-3%



•

•

# Centrality dependence of HBT( $\Phi$ ) oscillations

- ▶ 12 Φ-bin analysis, 0 < Φ < π</li>
   (0.15 < k<sub>T</sub> < 0.60 GeV/c)</li>
- 15° bins, 72 independent CF's
- 2<sup>nd</sup>-order oscillations of HBT radii are observed
- Lines are fits to allowed oscillations:

out, side, long go as  $cos(2\Phi)$ out-side goes as  $sin(2\Phi)$ 

 Amplitudes weakest for 0-5% (makes sense)



## $k_T$ dependence of HBT( $\Phi$ ) oscillations



## Fourier coefficients of HBT( $\Phi$ ) oscillations



## Blast-wave studies of HBT( $\Phi$ )

• Blast-wave: Hydro-inspired parameterization of freeze-out

| \/ y          |                                       | ()) <b>1</b> 0                             |               |  |
|---------------|---------------------------------------|--------------------------------------------|---------------|--|
| 7 parameters: | momentum space T, $\rho_0$ , $\rho_a$ | x-space<br>R <sub>x</sub> , R <sub>y</sub> | time<br>τ, Δt |  |

- Source anisotropy enters in two independent ways:
  - $\rho_a \neq 0$  \_ e.g. boost stronger in-plane for  $\rho_a > 0$
  - $R_y \neq R_x \_ e.g.$  more sources emitting in-plane for  $R_y > R_x$
- Use Blast-wave to relate HBT(Φ) measurements to source freeze-out shape & orientation

First, how sensitive are the HBT( $\Phi$ ) relative oscillation amplitudes to Blast-wave parameters?



F. Retiere and M.A. Lisa, in preparation

What drives the relative amplitudes?

- 1. Freeze-out size  $R_y^2 + R_x^2$  (fixed  $R_y/R_x$ )
  - No sensitivity of relative amplitudes to source size



riken/bnl - 11/2003

 $R_{\mu,n}^{2}(p_{T}) = \begin{cases} \langle R_{\mu}^{2}(p_{T},\phi) \cdot \cos(n\phi) \rangle & (\mu = 0, s, 1) \\ \langle R_{\mu}^{2}(p_{T},\phi) \cdot \sin(n\phi) \rangle & (\mu = 0, s) \end{cases}$ 

What drives the relative amplitudes?

- 1. Freeze-out size  $R_y^2 + R_x^2$  (fixed  $R_y/R_x$ )
  - No sensitivity of relative amplitudes to source size
- 2. Spatial anisotropy  $R_y/R_x$  (fixed  $R_y^2 + R_x^2$ )
  - Strong sensitivity of relative amplitudes to freeze-out shape



 $R_{\mu,n}^{2}(p_{T}) = \begin{cases} \langle R_{\mu}^{2}(p_{T},\phi) \cdot \cos(n\phi) \rangle & (\mu = 0, s, 1) \\ \langle R_{\mu}^{2}(p_{T},\phi) \cdot \sin(n\phi) \rangle & (\mu = 0, s) \end{cases}$ 

What drives the relative amplitudes?

- 1. Freeze-out size  $R_y^2 + R_x^2$  (fixed  $R_y/R_x$ )
  - No sensitivity of relative amplitudes to source size
- 2. Spatial anisotropy  $R_y/R_x$  (fixed  $R_y^2 + R_x^2$ )
  - Strong sensitivity of relative amplitudes to freeze-out shape
- 3. Flow anisotropy  $\rho_a$  (R<sub>y</sub> = R<sub>x</sub>)

 $R_{\mu,n}^{2}(\mathbf{p}_{T}) = \begin{cases} \langle R_{\mu}^{2}(\mathbf{p}_{T},\phi) \cdot \cos(n\phi) \rangle & (\mu = 0,s,1) \\ \langle R_{\mu}^{2}(\mathbf{p}_{T},\phi) \cdot \sin(n\phi) \rangle & (\mu = 0s) \end{cases}$ 

 Weak sensitivity in comparison to spatial anisotropy



What drives the relative amplitudes?

- 1. Freeze-out size  $R_y^2 + R_x^2$  (fixed  $R_y/R_x$ )
  - No sensitivity of relative amplitudes to source size
- 2. Spatial anisotropy  $R_y/R_x$  (fixed  $R_y^2 + R_x^2$ )
  - Strong sensitivity of relative amplitudes to freeze-out shape
- 3. Flow anisotropy  $\rho_a$  (R<sub>y</sub> = R<sub>x</sub>)
  - Weak sensitivity in comparison to spatial anisotropy
- 4. Temperature T
  - ~ Weak sensitivity

 $R_{\mu,n}^{2}(p_{T}) = \begin{cases} \langle R_{\mu}^{2}(p_{T},\phi) \cdot \cos(n\phi) \rangle & (\mu = 0, s, 1) \\ \langle R_{\mu}^{2}(p_{T},\phi) \cdot \sin(n\phi) \rangle & (\mu = 0, s) \end{cases}$ 



riken/bnl – 11/2003

#### **Dan Magestro**

1.1

What drives the relative amplitudes?

- 1. Freeze-out size  $R_y^2 + R_x^2$  (fixed  $R_y/R_x$ )
  - No sensitivity of relative amplitudes to source size
- 2. Spatial anisotropy  $R_y/R_x$  (fixed  $R_y^2 + R_x^2$ )
  - Strong sensitivity of relative amplitudes to freeze-out shape
- 3. Flow anisotropy  $\rho_a (R_y = R_x)$ 
  - Weak sensitivity in comparison to spatial anisotropy
- 4. Temperature T
  - ~ Weak sensitivity

Spatial anisotropy drives relative amplitudes

Use relative amplitudes to estimate eccentricity of freeze-out source



# **Evolution of source eccentricity**

# RJR

## Initial eccentricity

- Estimate  $\epsilon_{\text{initial}}$  from nuclear overlap model
- Weight events by ≈ # pairs

## Final eccentricity

- **HBT**( $\Phi$ ): Estimate  $\varepsilon_{\text{final}}$  from relative amplitudes ( $\varepsilon_{\text{final}} = 2 R_{s,2}^2/R_{s,0}^2$ )
- **Blast-wave**: Relative amplitudes are driven by spatial anisotropy
- 30% sys. error assigned to  $\epsilon_{\text{final}}$  based on variation of rel. amplitudes with other b-w parameters



- Monotonic relationship between  $\epsilon_{\text{initial}}$  and  $\epsilon_{\text{final}}$
- Freeze-out spatial anisotropy reflects greater initial spatial anisotropy

# HBT( $\Phi$ ): Physics interpretation

## Out-of-plane sources at freeze-out

 Indicate pressure and/or expansion time was not sufficient to quench initial shape

## But from v<sub>2</sub> measurements we know...

 Strong in-plane flow \_ significant pressure build-up in system

### Short expansion time plays dominant role in out-of-plane freeze-out source shapes

Short system lifetime consistent with blast-wave fits to spectra/v\_2 & "standard" HBT radii

- However, late-stage contributions to v<sub>2</sub> signal, though likely quite weak, cannot be exlcuded
- In framework of Teaney *et al* (Hydro+RQMD), late-stage rescattering stage is short-lived...



FIG. 13. Measured elliptic flow vs centrality for Au+Au at  $\sqrt{s_{NN}} = 130$  GeV. The circles show the conventional  $v_2$  with estimated systematic uncertainty due to nonflow [37], the stars show the fourth-order cumulant  $v_2$  from the generating function, the crosses show the conventional  $v_2$  from quarter events, and the squares show the fourth-order cumulant  $v_2$  from the four-subevent method.

## A simple estimate – $\tau_0$ from $\epsilon_{init}$ and $\epsilon_{final}$

- BW  $_{\beta_X}$ ,  $\beta_Y @$  F.O.  $(\beta_X > \beta_Y)$
- hydro: flow velocity grows  $\sim t$

$$\rightarrow \beta_{X,Y}(t) = \beta_{X,Y}(F.O.) \cdot \frac{t}{\tau_0}$$

- From  $R_L(m_T)$ :  $\tau_0 \sim 9 \text{ fm/c}$ consistent picture
- Longer or shorter evolution times
   X inconsistent

toy estimate:  $\tau_0 \sim \tau_0(BW) \sim 9 \text{ fm/c}$ 

• But need a real model comparison \_\_asHBT valuable "evolutionary clock" constraint for models



- Azimuthal dependence of HBT \_ Oscillations of HBT radii observed as fcn of centrality, k<sub>T</sub>
- Blast-wave study \_ relative amplitudes most sensitive to freeze-out spatial anisotropy
- Freeze-out source out-of-plane extended \_ indicates pressure and/or expansion time not sufficient to quench initial almond shape
- In context of strong elliptic flow observed at RHIC, measurement points to short expansion times

## **Back-up slides**

# M. Lisa, ISMD03

# A simple estimate – $\tau_0$ from $\varepsilon_{init}$ and $\varepsilon_{final}$

0.2 63

0.175

0.15

0.125

0.1

0.075

0.05

0.025

-0.025

-0.05

0

• BW 
$$\rightarrow \beta_X, \beta_Y @ F.O. (\beta_X > \beta_Y)$$

• hydro: flow velocity grows ~ t

$$\rightarrow \beta_{X,Y}(t) = \beta_{X,Y}(F.O.) \cdot \frac{t}{\tau_0}$$

- From  $R_L(m_T)$ :  $\tau_0 \sim 9 \text{ fm/c}$ ✓ consistent picture
- Longer or shorter evolution times X inconsistent

 $\checkmark$  toy estimate:  $\tau_0 \sim \tau_0(BW) \sim 9 \text{ fm/c}$ 

• But need a real model comparison  $\rightarrow$  asHBT valuable "evolutionary clock" constraint for models

6 Sep 2003

#### XXXIII ISMD - Krakow Poland

2.5



Midcentral (10%-20%)

STAR HBT

## **Projections of correlation function**

Т

Remember: CF & projections . shouldn't be perfectly Gaussian

\/LJ 11 17/17 .1 1 -1



Qlong: Qo,Qs .lt. 29 MeV/c

**Dan Magestro** 

2003/07/27 11.29

0.15

## Clarification: what we mean by 'source'







We measure: homogeneity lengths  $({\sf R}_{\sf i})$  as a function of  ${\bf k}_{\sf T}$  and  $\Phi$ 

We're interested in: <u>entire</u> source ("The Source"), NOT just a  $p_T$  slice of The Source

> Getting from  $R_i(kT,\Phi)$  to size/shape of "The Source" requires a model (more later)

