What the parton cascade tells us about RHIC

Dénes Molnár

The Ohio State University, Columbus, OH, USA

Workshop on "Collective flow and QGP properties" November 17-19, 2003, RIKEN-BNL, Upton, NY

• based on projects with: P. Huovinen, Z. W. Lin, S. A. Voloshin, M. Gyulassy

Outline

- Covariant parton transport theory
 - transport equation & ingredients
- Elliptic flow (v_2) puzzle at RHIC
 - observation: large and saturating anisotropy $v_2(p_\perp)$
 - puzzle for models \rightarrow large opacities?

• Looking for ways out

- dynamics? $2 \leftrightarrow 3$
- hadronization? parton coalescence

• Did we reach the hydro limit?

The theory

Covariant parton transport theory

Pang, Zhang, Gyulassy, D.M., Vance, Csizmadia, Pratt, Cheng, ...

Simplest Lorentz-covariant nonequilibrium dynamical framework

- dynamics governed by the mean free path: $\lambda(s,x) = 1/\sigma(s)n(x)$
 - interpolates between ideal hydro $\lambda = 0$ and free streaming $\lambda = \infty$
- natural decoupling, $\lambda(t \to \infty) \to \infty \quad \leftrightarrow \quad$ no need for sudden Cooper-Frye

Nonlinear 6+1D transport equation:

$$p^{\mu}\partial_{\mu}f_{i}(x,\vec{p}) = \overbrace{S_{i}(x,\vec{p})}^{\text{source}} + \overbrace{C_{i}^{el.}[f](x,\vec{p})}^{\text{source}} + \overbrace{C_{i}^{inel.}[f](x,\vec{p})}^{2\leftrightarrow 3} (\text{MPC}) + \ldots$$

solvable numerically \rightarrow only a few covariant algorithms: ZPC, <u>MPC</u>, Bjorken- τ , ...

Real dynamical parameter: transport opacity [see NPA 697, 495 ('02)]

 $\chi \equiv \langle n_{coll} \rangle \sigma_{tr} / \sigma_{el} \quad \propto \ \sigma_{tr} \times dN / d\eta$

Three ingredients (for RHIC)

• initial conditions

- soft + hard (minijets)
- gluon saturation

...

• cross sections

- e.g., perturbative QCD (LO) + screening

...

hadronization

- parton-hadron duality (1 parton \rightarrow 1 pion)
- independent jet fragmentation
- Lund string model
- parton coalescence

•••

Applications - collective phenomena

Elliptic flow

• momentum-space anisotropy of particle production in A+A collisions

$$\frac{dN}{d\phi dX} \equiv \frac{1}{2\pi} \frac{dN}{dX} [1 + 2\sum_{n=1} v_n(X) \cos(n\phi)] \quad \rightarrow \quad v_2(X) \equiv \langle \cos 2\phi \rangle_X$$

X : event and particle selection, e.g., centrality, transverse momentum

• origin of $v_2 \neq 0$: coordinate-space anisotropy (b > 0) & reinteractions

RHIC elliptic flow puzzle

Experimental data

VS.

Theoretical expectations[®]

• difficult to explain

• large and saturating anisotropy $v_2(p_{\perp})$

$v_2(p_T)$ from parton transport

D.M. & Gyulassy, NPA 697 ('02):

covariant parton transport model <u>MPC 1.6.0</u> (D.M.)

 $p^{\mu}\partial_{\mu}f_i = S_i + C_i^{2 \to 2}[f] + \dots$

- minijet initconds + gluon sat.
- screened 2 \rightarrow 2 pQCD cross sections
- 1 parton \rightarrow 1 pion hadronization

• v_2 saturation pattern reproduced with $15 \times$ enhanced opacities

 $\sigma_{el} \times dN_g/d\eta \approx 45000 \text{ mb} \gg \text{pQCD (3 mb} \times 1000)$

Look for ways out

One bet: inelastic processes

- hope: opacity enhancement due to particle production
- natural step: investigate $2 \rightarrow 2 + 2 \leftrightarrow 3$
 - algorithm for $3 \rightarrow 2$ has been developed (MPC)
 - but: several orders of magnitude larger CPU time required for covariance ($\ell^{-1/5}$)
 - unfortunately, full 3+1D simulation for RHIC is unfeasible
- \Rightarrow needed to get insight from a simpler problem (symmetry):
- choose: E_T evolution in 1+1D Bjorken scenario
 - expanding systems cool due to $p \, dV$ work
 - E_T reflects pdV work \Rightarrow measures strength of collective phenomena
 - e.g., ideal hydro:

$$T \propto au^{-1/3} \qquad \Rightarrow \qquad dE_T/dy \propto au^{-1/3}$$

pure $2 \rightarrow 2$ (Zhang & Gyulassy):

 $2 \leftrightarrow 3$ **vs** $2 \rightarrow 2$ (D.M. & Gyulassy):

- *p dV* work increases with opacity
 demonstrated approach to Navier-Stokes
- elastic and inelastic channels have similar transport effect
- ⇒ effect of $2 \leftrightarrow 3$ is roughly a doubling of $2 \rightarrow 2$ cross section

Hope looks gone: there is room for $2-3 \times$ larger opacities but not $15 \times$

Another idea: parton coalescence

Biró et al, Lévai, Csizmadia, Ko, Lin, Hwa, Yang, Greco et al, Fries et al, D.M., Voloshin, ...

An alternative to $1 \rightarrow many$ independent fragmentation

- picture: coalescence of massive "dressed" valence quarks
 no dynamical gluons
- basic equations: $qq \rightarrow meson$, $qqq \rightarrow baryon$ many $\rightarrow 1$

$$E\frac{dN_{M}(\vec{p})}{d^{3}p} = \int \frac{d\sigma^{\mu}p_{\mu}}{(2\pi)^{3}} \int d^{3}q |\psi_{\vec{p}}(\vec{q})|^{2} f_{\alpha}(\vec{p}_{\alpha}, x) f_{\beta}(\vec{p}_{\beta}, x)$$

$$E\frac{dN_{B}(\vec{p})}{d^{3}p} = \int \frac{d\sigma^{\mu}p_{\mu}}{(2\pi)^{3}} \int d^{3}q_{1}d^{3}q_{2} |\psi_{\vec{p}}(\vec{q}_{1}, \vec{q}_{2})|^{2} f_{\alpha}(\vec{p}_{\alpha}, x) f_{\beta}(\vec{p}_{\beta}, x) f_{\gamma}(\vec{p}_{\gamma}, x)$$

hadron yield space-time wave-fn. quark distributions

assumes: rare process, weak binding, factorizable 2-body and 3-body density matrix, smooth spacetime distributions, 3D hypersurface (sudden approx.)

• can dominate over fragm. for $p_{\perp} < 4 - 5 \text{ GeV}$

Coalescence amplifies elliptic flow

[D.M & Voloshin, PRL 91 ('03)]

• this KEY EFFECT solves opacity puzzle (much smaller parton v_2 needed)

Solution to opacity puzzle

1) elliptic flow amplification $\Rightarrow 2 - 3 \times$ smaller parton v_2 is enough

2) 15 - 20% nonflow correlations in first v_2 data $\Rightarrow 25\%$ opacity reduction

3) theoretical uncertainties \Rightarrow factor 2 - 3 in opacity [D.M & Gyulassy, NPA 661] inelastic processes (e.g., 2 \leftrightarrow 3), cross sections, initial parton density, ...

$$\Rightarrow$$
 factor 15 within reach

Success of flow scaling predictions

Sorensen [STAR], nucl-ex/0305008: K_0^S , Λ Castillo [STAR] at HIC03: Ξ

PHENIX, nucl-ex/0305013: π, K, p

- coalescence predictions confirmed for $\pi, K, K_0, p, \Lambda, \Xi \rightarrow$ yet to see Ω, ϕ
- interestingly, RHIC data indicate $v_2^q \approx v_2^s$

Story is not over...

Further progress on all fronts possible/necessary

- inelastic channels
 - would love to see full 3+1D RHIC simulations one day
- coalescence (hadronization)
 - promising (also meson/baryon ratios) but treatment is oversimplified
 - check other observables
- initial conditions?
 - much better control desired

• dynamics?

- critical scattering? strongly coupled regime?
- correlation dominated limit (f)? virtually unexplored
- field/wave limit? 3+1D classical Yang-Mills?
- or maybe all is hydro?

Did the transport results prove hydro? Many think yes. BUT let's see... ideal hydro (Kolb, Heinz, Snellings)

transport

\Rightarrow so, extreme 15x perturbative opacities justify hydro?

Transport

"Infinite Opacity" Passage

?finite *do*? ?decoupling

freezeout cond. initial cond. EOS e(p,n)conservation laws

Hydro

adronization

antial cond.

covariant BTE

One precursor: E_T work _{Gyulassy,Zhang,D.M.} MPC vs hydro (1+1D and 3+1D) PRC 62, 054907 ('00)

• ideal hydro (code: Rischke & Dumitru) does more work than transport

 \Rightarrow even 20 \times pQCD opacities found insufficient to maintain equilibrium

How can both get the v_2 data then?

Key: different initial conditions & thermodynamics

hydro:

- $au_0 = au_{th} = 0.6 \text{ fm/}c$
- QGP-in-bag + hadron gas EOS
- wounded nucleon entropy profile
- freezeout at $T_{FO} \approx 120 \text{ MeV}$

parton transport:

- $au_0 = au_{form} = 0.1$ fm/c
- massless gas (e = 3p, if in thermal equil.)
- binary collision density profile

\Rightarrow apples to oranges comparison...

Apples-to-apples elliptic flow

Take same hydro and transport initconds & EOS, with $\tau_0 = 0.1$ fm/c $(T_0 = 700$ MeV, binary coll. profile, e = 3p, b = 8 fm, $dN/d\eta(b = 0) = 1000$, $T_{FO} = 120$ MeV)

D.M. & Huovinen ('03):

 \Rightarrow large dissipation, transport v_2 is 30-50% reduced relative to hydro

 $\rightarrow N_{coll} \gg 3$, still not thermal - because of rapid longitudinal expansion

Apples-to-apples elliptic flow (2)

Now same hydro and transport initconds but $\tau_0 = 0.6$ fm/c, scaled $T_0 \sim \tau_0^{-1/3}$

D.M. & Huovinen ('03):

⇒ large dissipation, transport v_2 is 30-50% reduced relative to hydro ⇒ remarkably little sensitivity to initial time

Extremely interesting

• hydro:

- remarkable insensitivity to initial time \rightarrow are QGP EOS results robust, too?
- is it an accident? or, can it be due to common freezeout temperature?
- any analytic understanding possible?

• transport:

- counter-intuitive: fewer collisions but same flow?

$$\langle n_{coll} \rangle = \int dt \frac{d\sigma_{el}}{dt} \int dz \rho \left(\vec{x}_0 + z \hat{\mathbf{n}}, \tau = \frac{z}{c} \right) \ \approx \ \frac{dN}{dy} \frac{\sigma_{el}}{2\pi R_G^2} \log \frac{R_G}{\tau_0}$$

- on the other hand:

 $\Gamma_{coll} \propto n\sigma \propto 1/\tau, \qquad \Gamma_{exp} \propto 1/\tau \quad \Rightarrow \quad \Gamma_{coll}/\Gamma_{exp} \sim const$

- also only one scale [NPA 697, 495] R/ au_0 changes, while $\sigma dN/d\eta$, μ/T_0 stay same

In either case, 44 mb is insufficient for hydro limit \rightarrow need even larger.

Pressure anisotropy

Study pressure tensor b = 0, $\tau_0 = 0.1$ fm, (same minijet initial conditions)

- even in center, large pressure anisotropy $p_{trans} \sim 2p_z$
- \bullet evolution rapidly departs from hydro limit \rightarrow some anisotropic hydro?

Final spectra

- transport spectra strongly depend on $\tau_0 \rightarrow$ can one pinpoint form. time?
- hydro spectra are less sensitive, and agree below $p_T < 1 \text{ GeV}$

Quenching (final/initial)

• relative quenching weakens in transport for larger au_0

 \Rightarrow maybe a larger $\tau_0 > 1$ fm can save v_2 vs quenching puzzle?

Conclusions

• What we learned:

- large v_2 at RHIC indicates at least pQCD opacities (and possibly much larger)
- absolutely amazing why hydro works even 45mb is not enough
- hydro and transport v_2 seem robust against initial au_0 (much less so for spectra)

• Open issues (my incomplete list):

- map out initial conditions e.g., formation time?, initial condition models?
- better understanding of microscopic dynamics develop and test various dynamical models/limits, make codes available (OSCAR)
 3+1D inelastic transport, viscous hydro, 3+1D ideal hydro, 3+1D Yang-Mills,

strongly coupled, highly-correlated systems, ...

- refine/further test hadronization models e.g., parton coalescence
- $dE_T/dN(b) = const$ puzzle
- v_2 vs quenching puzzle
- high- p_T angular correlations (flow vs jets)
- HBT puzzle