

1

Flow and non-identical two-particle correlations Fabrice Reti_re (Lawrence Berkeley Lab) This talk includes the work of many students: M. Lopez-Noriega (Ohio. SU) G. Renault (Subatech) H. Gos, M. Janik, A. Kisiel, P. Swarwas (Warsaw U. of Tech.)

Outline

- Extracting space-time information from non-id correlation
- How flow shifts sources of different particle species
- Flow models/parameterization vs STAR data
- Outlook

Effect of final state interactions (i) Coulomb dominates

3

Effect of final state interactions (ii) Only strong interaction

Effect of final state interactions (iii) Coulomb and Strong combined

π-K correlation functions Dominated by Coulomb

FFFFFF

Probing the space-time emission asymmetry

π -K double ratios

Getting more quantitative by fitting the correlation functions

- Take momentum from reconstruted pairs
- Caculate CFs using code from R.Lednicky et al.
- Add position according to a 3D Gaussian in the pair rest frame
 - Parameters: σ and $<\Delta r_{out} >$

Fit results

	pair	σ (fm)	Δr_{out}^{*} (fm)	χ^2 / dof	
	$\pi^+ - K^+$	12.2 ± 0.6	-6.3 ± 1.2	25.8/26	
	$\pi^ K^-$	12.2 ± 0.7	-5.7 ± 1.2	23.6/26	
	$\pi^+ - K^-$	13.5 ± 0.8	-5.3 ± 1.2	41.9/26	
	$\pi^ K^+$	12.7 ± 0.6	-4.6 ± 1.0	43.1/26	
Systematic e	errors	• M	ore fit resu	ults (4 C	Fs average)
• Uncertaint	y on purity	/	$< r_{\pi}^{*} - r_{K}^{*} >$	$= -5.6 \pm 0$).6 ^{+1.9} -1.3 fm
	• •			/ 1 11	

- Uncertainty in correlation calculation
- Gaussian source assumption
- > 130 GeV, to be published in PRL

•
$$< r_{\pi}^* - r_p^* > = -6.3 \pm 0.6 \pm 2 \text{ fm}$$

> 130 GeV, still preliminary

•
$$< r_{K}^{*} - r_{p}^{*} > = 0.9 \pm 0.7 \pm 2$$
 fm
> 200 GeV, still preliminary

Compare to a flow baseline: Blast wave parameterization

Inspired by E.Schnedermann, J. Sollfrank, and U. Heins, PRC 48 (2002) 2462 ¹¹

Distribution emission of points in Blast-Wave

Distribution of emission points at a given emission momentum.

Particles are correlated when their velocities are similar. Keep velocity constant:

- Left, $\beta_x = 0.73c$, $\beta_y = 0$
- Right, $\beta_x = 0.91c$, $\beta_y = 0$

Dash lines: average emission Radius. $\Rightarrow \langle R_x(\pi) \rangle \langle \langle r_x(K) \rangle \rangle \langle \langle R_x(p) \rangle \rangle$

Shifts from Blast wave

 Parameters from best fit to central Au-Au @ 130 GeV

- > No tuning
- Legend
 - Dot = $-\gamma\beta\Delta t$
 - Dash = $\gamma \Delta r_{out}$
 - Plain = Δr_{out}^*

More time shift from resonances

• Use RQMD as a gauge

- Similar spatial shift as in the BWP
 - Turns off when
 rescattering is turned off
- Time shift
 - > Similar to BWP
 - > + effect of resonances

STAR data and models

Fitting and quantitative comparisons

- Source is not Gaussian in model
 - Ambiguity when comparing spatial distribution directly
- Data statistics too low to study whether or not the source is Gaussian

Summary plot

Summary

- Average emission point/time of pions, kaons and protons are shifted.
- Shift consistent with flow
 - Non-id correlation analyses offer a new way to study flow.
 - Agreement with the blast wave parameterization
 No tuning. Parameters from fit to HBT and spectra
- RQMD: Flow + significant contribution from resonance decay
- Hints that the proton decouple late?

Outlook 1 Overcoming the systematic errors

• Systematic errors

- Purity estimation
- Source shape
- Correlation function calculations
 - Uncertainties on scattering length, ...
- Errors vary little with p_T
 - Point to point errors would be small

Outlook 2 π - Ξ correlation and collectivity

- Source size and shift from π⁻-Ξ⁻ and π⁺-Ξ⁺
 - Coulomb only
- Do Ξ flow as π ?
- Investigate strong interaction in unlike-sign
 - Input onto crosssections?

Outlook 3 A lot can be done

	π^{\pm}	K±	K ⁰ _s	p^{\pm}	Λ	Ξ^{\pm}	Ω^{\pm}	\mathbf{D}^{\pm}
π^{\pm}	Y1-4							
K±	Y1-4	Y1-4		Hope other RHIC				
K ⁰ _s	int.?	int.?	Y2-4	ex	penne			
\mathbf{p}^{\pm}	Y1-4	Y2-4	int.?	Y2-4				
Λ	int.?	int.?	no stat	Y2-4	Y4			
Ξ^{\pm}	Y2-4	Y4?	no stat	Y4?	no stat	no stat		
Ω^{\pm}	Y4?	no stat	no stat	no stat	no stat	no stat	no stat	
D^{\pm}	Y7?	no stat	no stat	no stat	no stat	no stat	no stat	no stat

Y1 (2000) = 0.5M central @ 130 GeV, Y2 = 2M central @ 200 GeV, Y4 = 50M + min-bias @ 200 GeV 22

Extra slides

Transverse flow shifts average emission points

24

		Central	Mid-central	Peripheral	
	data				
Fit narameters	π , K, p spectra [?]	0-5%	15 - 30%	60-92%	Ē 🏻
i ne parameters	Λ spectra [?]	0-5%	20-35%	35 - 75%	L
	pion radii [29]	0-12%	20-40%	32-72%	
	Elliptic flow [20]	0-11%	11 - 45%	45 - 85%	
	χ^2/bin				:
	$\pi^+ \& \pi^-$ spectra	10.4/12	46.4/12	14.1/9	
3D Blast wave analysis	$K^+ \& K^-$ spectra	24.6/22	20.6/22	9.2/10	
done with Mike Lisa (OSU)	$p \& \overline{p} \text{ spectra}$	10.6/18	26.3/18	28.6/12	
	$\Lambda \& \overline{\Lambda}$ spectra	9.5/16	12.3/16	12.1/16	
	πv_2	13.8/12	36.1/12	8.5/12	
	$p v_2$	0.8/3	11.3/6	1.2/3	
	πr_{out}	1.8/6	0.4/2	0.4/2	
	πr_{side}	2.6/6	0.3/2	0.07/2	
	πr_{long}	6.5/6	0.003/2	0.09/2	
	Total	80.5/101	153.7/92	74.3/68	
	parameters				
	T (MeV)	108 ± 3	106 ± 3	95 ± 4	
	$ ho_0$	0.88 ± 0.01	0.87 ± 0.02	0.81 ± 0.02	
	$\langle \beta_T \rangle$	0.53 ± 0.01	0.52 ± 0.02	0.47 ± 0.02	
	$ ho_a$	0.059 ± 0.008	0.052 ± 0.006	0.04 ± 0.01	
Will increase with new	$R_x(fm)$	12.9 ± 0.3	10.2 ± 0.5	8.00 ± 0.4	
	$R_y(fm)$	12.8 ± 0.3	11.8 ± 0.6	10.1 ± 0.4	
Coulomb correction of	$\tau(fm/c)$	8.9 ± 0.3	7.4 ± 1.2	6.5 ± 0.8	
pion HBT radii	$\Delta t(fm/c)$	0.002 ± 1.4	0.8 ± 3.2	0.8 ± 1.9	25

