Particle production at low, intermediate and high p_{T} :

What we're learning about heavy-ion collisions, and hadronization of bulk partonic matter from measurements of identified particle production.

Key features of Au+Au collisions

1) Azimuthal Anisotropy: near the hydrodynamic coordinate-to-momentum conversion limit

2) Large Baryon/Meson ratio

3) Suppression of high p_{T} yields with reduced away-side jet-like correlations

WE PRESENT: measurements

 of K_{S} and \square production in central and peripheral collisions and their azimuthal anisotropy in the transverse plane (mid-rapidity).
Azimuthal anisotropy parameters

B)

A) Coordinate space anisotropy $\square=\frac{\left\langle y^{2} \square x^{2}\right\rangle}{\left\langle y^{2}+x^{2}\right\rangle}$
B) Momentum space anisotropies

$$
\left.E \frac{d^{3} N}{d^{3} p}=\frac{1}{2 \square} \frac{d^{2} N}{p_{T} d p_{T} d y}\right]^{1}+\square_{n=1} 2 v_{n} \cos \left[n\left(\square \Delta \square_{r}\right)\right. \text { 目 }
$$

C) "Elliptic Flow" $v_{2}=\langle\cos [2(\mathrm{OD}$,) $]$

Pressure gradients and v_{2} :

Self-quenching sensitive to early stage (hydro picture).

- Collision overlap density from Woods-Saxon/Wounded-Nucleon
- If a pressure is established, it should be anisotropic in the transverse plane.

Pressure gradients and v_{2} :

 Self-quenching sensitive to early stage (hydro picture).

- Initial conditions only: initial pressure gradient assumed proportional to initial density gradient.
- Fewer interactions will reduce the peripheral anisotropy.

STAR particle identification

Min-bias identified particle v_{2} at 200 GeV

$\bullet \mathrm{V}_{2}$ appears to saturate at ~ 0.13 for K_{s} and ~ 0.20 for \square with the saturation setting in at different p_{T}.
-Conversion of coordinate to momentum anisotropy: at or near the hydrodynamic limit (zero path length/totally opaque).

Identified particle v_{2} at low p_{T}

-Hydro models assuming local thermal equilibrium describe the species dependence of v_{2} well.
-Increase of integrated v_{2} with mass is indicative of significant collective motion.

High $p_{T} v_{2}$:
 Energy loss and surface emission?

-A particle dependence and saturation in all three centrality intervals.
-Hard-sphere, infinite-opacity limit for surface emission can't reach the measured $\mathrm{v}_{2} \square \mathrm{v}_{2}$ requires a dynamic expansion of strongly interacting matter.

For hadron formation by coalescence of co-moving partons

$$
\begin{aligned}
& v_{2}^{\text {meson }}\left(p_{T}\right) \square 2 \cdot v_{2}^{\text {quark }}\left(p_{T} / 2\right) \\
& v_{2}^{\text {baryon }}\left(p_{T}\right) \square 3 \cdot v_{2}^{\text {quark }}\left(p_{T} / 3\right)
\end{aligned}
$$

In this scenario we can infer the value of the parton v_{2} in the relevant p_{T} region ($\sim 7 \%$).

Scaling works with kaons, protons, lambdas and Xis. Pions may be problematic.

Scaling Breakdown Lower limit: $\mathrm{p}_{\mathrm{T}} / \mathrm{n}<0.6 \mathrm{GeV} / \mathrm{c}^{2}$ Upper limit: undetermined*
$* R_{\mathrm{CP}}$ suggest a breakdown for $\mathrm{p}_{\mathrm{T}} / \mathrm{n}>1.7 \mathrm{GeV} / \mathrm{c}^{2}$

Particle spectra:

Baryon enhancement at intermediate p_{T}.

-Two component shape evident in kaon and pion spectra.
-The pion and kaon shape change occur at similarly small p_{T} (near $1.5 \mathrm{GeV} / \mathrm{c}$).
-For proton and \square the spectra don't exhibit such a twocomponent shape.

Two component spectra fits:

 Hydrodynamic inspired model and pQCD power-law.

The crossover from a soft to hard shape is species dependent:

$$
\mathrm{p}_{\mathrm{T}, \text { cross }}(\text { kaon }) \approx 1.5 \mathrm{GeV} / \mathrm{c}, \quad \mathrm{p}_{\mathrm{T}, \text { cross }}(\square) \approx 3-4 \mathrm{GeV} / \mathrm{C} ?_{16}
$$

System size dependence: R_{CP}

-Total yield in central collisions suppressed w.r.t. scaled peripheral collisions.
-At intermediate p_{T} however, the baryon yields are increasing more quickly with centrality than meson yields.
-The $\square, \mathrm{K}_{\mathrm{s}}$, and inclusive yields have the same suppression near $5 \mathrm{GeV} / \mathrm{c}$.

The p_{T} Scale of $R_{A A}$ and v_{2} for K_{S} and \square

$\mathrm{Au}+\mathrm{Au} ; \sqrt{\mathrm{S}_{\mathrm{NN}}}=200 \mathrm{GeV}$; Mid-rapidity

The saturation of v_{2} and fall of R_{CP} are correlated.

In a scenario with partonic energy loss followed by unmodified fragmentation, a larger v_{2} would be associated with a smaller R_{CP}.

At intermediate p_{T} : species dependence contradicts a simple partonic energy loss and unmodified fragmentation picture.

Observations of const. quark number dependence:

-A two-component p_{T} spectra (exponential and powerlaw tail):
-with $\mathrm{p}_{\mathrm{T}, \text { cross }}($ kaon $) \approx \mathrm{p}_{\mathrm{T}, \text { cross }}($ pion $) \approx 1-2 \mathrm{GeV} / \mathrm{c}$.
-and $\mathrm{p}_{\mathrm{T}, \text { cross }}(\mathrm{D}) \approx \mathrm{p}_{\mathrm{T}, \text { cross }}($ proton $) \approx 3-4 \mathrm{GeV} / \mathrm{c}$.
-Particle-type dependent nuclear modification at intermediate p_{T} :
-with $\mathrm{R}_{\mathrm{CP}}($ kaon $) \approx \mathrm{R}_{\mathrm{CP}}(\mathrm{\square}) \leq 0.65$.
-and $\mathrm{R}_{\mathrm{CP}}(\mathrm{\square}) \approx \mathrm{R}_{\mathrm{CP}}(\square) \approx \mathrm{R}_{\mathrm{CP}}$ (proton) ≤ 0.95.
-Particle-type dependent elliptic flow:
-with most hadrons having the same $\mathrm{v}_{2} / \mathrm{n}\left(\mathrm{p}_{\mathrm{T}} / \mathrm{n}\right)$ for p_{T} above $\sim 1 \mathrm{GeV} / \mathrm{c}$.
-Large baryon to meson ratio ($\mathrm{\square} / \mathrm{K}_{\mathrm{s}}$ and $\mathrm{p} /$ pion).

Const. quark no. dependence

\bullet A two-component p_{T} spectra (exponential and power-law tail):

$$
\begin{aligned}
& - \text { with } \mathrm{p}_{\mathrm{T}, \text { cross }}(\text { kaon }) \approx \mathrm{p}_{\mathrm{T}, \text { cross }}(\text { pion }) \approx 1-2 \mathrm{GeV} / \mathrm{c} . \\
& \text {-and } \mathrm{p}_{\mathrm{T}, \text { cross }}(\square) \approx \mathrm{p}_{\mathrm{T}, \text { cross }}(\text { proton }) \approx 3-4 \mathrm{GeV} / \mathrm{c} .
\end{aligned}
$$

-Particle-type dependent nuclear modification at intermediate p_{T} :

$$
\begin{aligned}
& \text {-with } R_{C P}(\text { kaon }) \approx R_{C P}(\square) \leq 0.65 \text {. } \\
& \text {-and } R_{C P}(\square) \approx R_{C P}(\square) \approx R_{C P}(\text { proton }) \leq 0.95 \text {. }
\end{aligned}
$$

-Particle-type dependent elliptic flow:
-with most hadrons having the same $v_{2} / n\left(p_{T} / n\right)$ for p_{T} above $\sim 1 \mathrm{GeV} / \mathrm{c}$.
\bullet Large baryon to meson ratio (\square / K_{S} and $\mathrm{p} /$ pion).

These observations:

-Provide insight into the environments influence on hadron formation.
-Provide information on the characteristics of the partonic state.
Further investigation/confirmation is still needed.
An extensive phenomenological study of identified particle yields and \mathbf{v}_{2} verses system-size can shed light on hadron formation (long-term/high-impact RHIC project، 20

Acknowledgment of contributors

- Javier Castillo
-Hui Long
- Jingguo Ma
-Ben Norman
-Fabrice Retiere
- Kai Schweda
-Christophe Suire
-Eugene Yamamoto

Four steps to final hadronic distributions (perturbative)

-Production of fast partons from hard scattering.
-Blind to final hadron species.
-Propagation and interaction within the partonic medium.
-Blind to final hadron species (caveat gluon vs quark).
-Strong interaction of color charged objects.
-Hadronization of the parton.
-Propagation and interaction within the hadronic medium.
How do we disentangle the partonic and hadronic effects?

Disentangling partonic/hadronic

$$
E_{h} \frac{d \square_{h}}{d^{3} p_{h}}=\square_{a}^{1} \frac{d z}{\square_{0}^{2}} D_{a \square h}(z) E_{a} \frac{d \square_{a}}{d^{3} p_{a}}
$$

-In a $d E / d x$ scenario: the larger V_{2} contradicts the smaller _ suppression.
-Changing the partonic distributions or rescaling z affects all hadron species in the same way (gluon/quark jets?)
-The hadronization process is a crucial step:
-The p_{T}-scale seems to be set by constituent-quark-number not mass (can we measure a flavor dependence).
-Particles with small hadronic x-sections (i.e. _, _, _) will help disentangle partonic/hadronic interactions:
-Measure v_{2} and $R_{C P}$ for _ and _up to $p_{T}=7 \mathrm{GeV} / \mathrm{c}$.
-Conduct a system size scan to study the variation

Why would anyone believe jets and $\mathrm{dE} / \mathrm{dx}$ at $2-5 \mathrm{GeV} / \mathrm{c}$

Why would anyone believe jets and $\mathrm{dE} / \mathrm{dx}$ at $2-5 \mathrm{GeV} / \mathrm{c}$

Why not believe jets and $\mathrm{dE} / \mathrm{dx}$ at $2-5 \mathrm{GeV} / \mathrm{c}$

We know the spectra at $2-5 \mathrm{GeV} / \mathrm{c}$ is a complicated superposition of soft and hard identified spectra (Baryon/Meson).

Why not believe jets and $\mathrm{dE} / \mathrm{dx}$ at 2-5 GeV/c

Still doesn't provide a strong constraint. Further study will help. Too much room for unconstrained modifications.

Why not believe jets and $\mathrm{dE} / \mathrm{dx}$ at 2-5 GeV/c

Again: we know for 2-5 GeV/c there is a complicated superposition between identified spectra.

