# Particle production at low, intermediate and high $p_T$ :

What we're learning about heavy-ion collisions, and hadronization of bulk partonic matter from measurements of identified particle production.



Paul Sorensen Lawrence Berkeley National Labatory



#### **Key features of Au+Au collisions**



1) Azimuthal Anisotropy: near the hydrodynamic coordinateto-momentum conversion limit





reduced away-side jet-like correlations

**WE PRESENT:** measurements of  $K_s$  and  $\Lambda$  production in central and peripheral collisions and their azimuthal anisotropy in the transverse plane (mid-rapidity).

## Azimuthal anisotropy parameters



Introduction

#### Pressure gradients and v<sub>2</sub>:

Self-quenching sensitive to early stage (hydro picture).



- Collision overlap density from Woods-Saxon/Wounded-Nucleon
- If a pressure is established, it should be anisotropic in the transverse plane.



## Pressure gradients and $v_2$ :

Self-quenching sensitive to early stage (hydro picture).



- Initial conditions only: initial pressure gradient assumed proportional to initial density gradient.
- Fewer interactions will reduce the peripheral anisotropy.

## STAR particle identification





#### Min-bias identified particle v<sub>2</sub> at 200 GeV



•v<sub>2</sub> appears to saturate at ~<u>0.13 for K<sub>S</sub></u> and ~<u>0.20 for  $\Lambda$ </u> with the saturation setting in at different p<sub>T</sub>.

•Conversion of coordinate to momentum anisotropy: at or near the hydrodynamic limit (zero path length/totally opaque).



•Hydro models assuming local thermal equilibrium describe the species dependence of  $v_2$  well.

•Increase of integrated  $v_2$  with mass is indicative of significant collective motion.

#### High p<sub>T</sub> v<sub>2</sub>: Energy loss and surface emission?





•A particle dependence and saturation in all three centrality intervals.

•Hard-sphere, infinite-opacity limit for surface emission can't reach the measured  $v_2 \rightarrow v_2$ requires a dynamic expansion of strongly interacting matter.





Scaling works with kaons, protons, lambdas and Xis. Pions may be problematic.



**Scaling Breakdown** Lower limit: p<sub>T</sub>/n<0.6 GeV/c<sup>2</sup> Upper limit: undetermined\*

 $R_{CP}$  suggest a breakdown for  $p_T/n > 1.7$  GeV/c<sup>2</sup>

#### Particle spectra:

#### Baryon enhancement at intermediate $p_T$ .



•Two component shape evident in kaon and pion spectra.

•The pion and kaon shape change occur at similarly small  $p_T$  (near 1.5 GeV/c).

•For proton and  $\Lambda$  the spectra don't exhibit such a two-component shape.



## Two component spectra fits:

Hydrodynamic inspired model and pQCD power-law.



The crossover from a soft to hard shape is species dependent:

p<sub>T,cross</sub>(kaon) ≈1.5 GeV/c,

$$p_{T,cross}(\Lambda) \approx 3-4 \text{ GeV/c }_{16}$$

## System size dependence: $R_{CP}$



•Total yield in central collisions suppressed w.r.t. scaled peripheral collisions.

•At intermediate p<sub>T</sub> however, the baryon yields are increasing more quickly with centrality than meson yields.

•The  $\Lambda$ , K<sub>S</sub>, and inclusive yields have the same suppression near 5 GeV/c.

#### The $p_T$ Scale of $R_{AA}$ and $v_2$ for $K_S$ and $\Lambda$



The saturation of  $v_2$  and fall of  $R_{CP}$  are correlated.

In a scenario with partonic energy loss followed by unmodified fragmentation, a larger  $v_2$  would be associated with a smaller  $R_{CP}$ .

At intermediate  $p_T$ : species dependence contradicts a simple partonic energy loss and unmodified fragmentation picture.

#### **Observations of const. quark number dependence:**

•A two-component  $p_T$  spectra (exponential and power-law tail):

–with  $p_{T,cross}$ (kaon)  $\approx p_{T,cross}$ (pion)  $\approx 1-2$  GeV/c.

-and  $p_{T,cross}(\Lambda) \approx p_{T,cross}(proton) \approx 3-4 \text{ GeV/c.}$ 

•Particle-type dependent nuclear modification at intermediate  $p_T$ :

-with  $R_{CP}(kaon) \approx R_{CP}(\phi) \leq 0.65$ .

-and  $R_{CP}(\Xi) \approx R_{CP}(\Lambda) \approx R_{CP}(proton) \le 0.95$ .

•Particle-type dependent elliptic flow:

–with most hadrons having the same  $v_2/n(p_T/n)$  for  $p_T$  above ~1 GeV/c.

•Large baryon to meson ratio ( $\Lambda/K_S$  and p/pion).

#### **Const. quark no. dependence**

•A two-component  $p_T$  spectra (exponential and power-law tail):

-with  $p_{T,cross}$ (kaon)  $\approx p_{T,cross}$ (pion)  $\approx 1-2$  GeV/c.

-and  $p_{T,cross}(\Lambda) \approx p_{T,cross}(proton) \approx 3-4 \text{ GeV/c.}$ 

•Particle-type dependent nuclear modification at intermediate  $p_T$ :

-with  $R_{CP}(kaon) \approx R_{CP}(\phi) \le 0.65$ .

-and  $R_{CP}(\Xi) \approx R_{CP}(\Lambda) \approx R_{CP}(proton) \le 0.95$ .

•Particle-type dependent elliptic flow:

-with most hadrons having the same  $v_2/n(p_T/n)$  for  $p_T$  above ~1 GeV/c.

•Large baryon to meson ratio ( $\Lambda/K_S$  and p/pion).

#### **These observations:**

-Provide insight into the environments influence on hadron formation.

-Provide information on the characteristics of the partonic state.

Further investigation/confirmation is still needed.

An extensive phenomenological study of identified particle yields and  $v_2$  verses system-size can shed light on hadron formation (long-term/high-impact RHIC project) 20

# Acknowledgment of contributors

- •Javier Castillo
- •Hui Long
- •Jingguo Ma
- •Ben Norman
- Fabrice Retiere
- •Kai Schweda
- •Christophe Suire
- •Eugene Yamamoto

# Four steps to final hadronic distributions (perturbative)

•Production of fast partons from hard scattering.

-Blind to final hadron species.

- •Propagation and interaction within the partonic medium.
  - -Blind to final hadron species (caveat gluon vs quark).
  - -Strong interaction of color charged objects.
- •Hadronization of the parton.
- •Propagation and interaction within the hadronic medium.

## How do we disentangle the partonic and hadronic effects?

**Disentangling partonic/hadronic**  $E_{h} \frac{d\sigma_{h}}{d^{3}p_{h}} = \sum_{a} \int_{0}^{1} \frac{dz}{z^{2}} D_{a \to h}(z) E_{a} \frac{d\sigma_{a}}{d^{3}p_{a}}$ 

•In a dE/dx scenario: the larger \_  $v_2$  contradicts the smaller \_ suppression.

-Changing the partonic distributions or rescaling *z* affects all hadron species in the same way (gluon/quark jets?)

•The hadronization process is a crucial step:

–The  $p_T$ -scale seems to be set by constituent-quark-number not mass (can we measure a flavor dependence).

•Particles with small hadronic x-sections (*i.e.* \_, \_, \_) will help disentangle partonic/hadronic interactions:

–Measure  $v_2$  and  $R_{CP}$  for \_ and \_ up to  $p_T=7$  GeV/c.

-Conduct a system size scan to study the variation

# Why would anyone believe jets and dE/dx at 2-5 GeV/c



# Why would anyone believe jets and dE/dx at 2-5 GeV/c



#### Why not believe jets and dE/dx at 2-5 GeV/c



#### Why not believe jets and dE/dx at 2-5 GeV/c



#### Why not believe jets and dE/dx at 2-5 GeV/c

